DOI QR코드

DOI QR Code

Transport and retention of polymer-stabilized zero-valent iron nanoparticles in saturated porous media: Effects of initial particle concentration and ionic strength

  • Esfahani, A. Ramazanpour (Department of Soil Science, Faculty of Agriculture, Shahid Chamran University) ;
  • Firouzi, A. Farrokhian (Department of Soil Science, Faculty of Agriculture, Shahid Chamran University) ;
  • Sayyad, Gh. (Department of Soil Science, Faculty of Agriculture, Shahid Chamran University) ;
  • Kiasat, A.R. (Department of Pure Chemistry, Faculty of Science, Shahid Chamran University)
  • Received : 2013.05.25
  • Accepted : 2013.10.27
  • Published : 2014.09.25

Abstract

This study investigated the transport and retention of polyacrylic acid and polyvinylpyrrolidone stabilized zero-valent iron nanoparticles (PAA-ZVIN and PVP-ZVIN) in saturated porous media. The transport experiments were conducted in sand packed columns. The breakthrough curves (BTCs) and retention curves of ZVIN were analyzed. Results of transport experiments showed that increasing initial particle concentration and ionic strength led to a decrease in ZVIN transport. The zeta potentials and hydrodynamic diameters of PAA-ZVIN were apparently more negative compared to PVP-ZVIN. Results indicated that some mechanisms such as aggregation, ripening, and surface roughness had considerable impact on ZVIN retention in porous media.

Keywords

References

  1. M.Z. Kassaee, E. Motamedi, A. Mikhak, R. Rahnamaie, Chem. Eng. J. 166 (2011) 490. https://doi.org/10.1016/j.cej.2010.10.077
  2. L. Liu, S. Wei, Y. Liu, Z. Shao, Desalination 285 (2012) 271. https://doi.org/10.1016/j.desal.2011.10.012
  3. T. Satapanajaru, C. Chompuchan, P. Suntornchot, P. Pengthamkeerati, Desalination 266 (2011) 218. https://doi.org/10.1016/j.desal.2010.08.030
  4. J. Chen, X. Qui, Z. Fang, M. Yang, T. Pokeung, F. Gu, W. Cheng, B. Lan, Chem. Eng. J. 181/182 (2012) 113. https://doi.org/10.1016/j.cej.2011.11.037
  5. Y. Mamindy-Pajany, C. Hurel, N. Marmier, M. Romeo, Desalination 281 (2012) 93.
  6. H.L. Lien, W.X. Zhang, J. Environ. Eng. 125 (1999) 1042. https://doi.org/10.1061/(ASCE)0733-9372(1999)125:11(1042)
  7. Y. Liu, S.A. Majetich, R.D. Tilton, D.S. Sholl, G.V. Lowry, Environ. Sci. Technol. 39 (2005) 1338. https://doi.org/10.1021/es049195r
  8. D.W. Elliott, W.X. Zhang, Environ. Sci. Technol. 35 (2001) 4922. https://doi.org/10.1021/es0108584
  9. N. Saleh, K. Sirk, Y. Liu, T. Phenrat, B. Dufour, K. Matyaszewski, R.D. Tilton, G.V. Lowry, Environ. Eng. Sci. 24 (2007) 45. https://doi.org/10.1089/ees.2007.24.45
  10. W.Z. Zhang, W.E. Daniel, Remediation. J. 16 (2006) 7. https://doi.org/10.1002/rem.20078
  11. F. Zhao, D. Liu, J.C.B. Roberts, Ind. Eng. Chem. Res. 46 (2007) 29. https://doi.org/10.1021/ie0610896
  12. S.R. Kanel, R.R. Goswami, T.P. Clement, M.O. Barnett, D. Zhao, Environ. Sci. Technol. 42 (2008) 896. https://doi.org/10.1021/es071774j
  13. F. He, D. Zhao, Environ. Sci. Technol. 39 (2005) 3314. https://doi.org/10.1021/es048743y
  14. P. Jiemvarangkul, W. Zhang, S. Lien, Chem. Eng. J. 170 (2011) 482. https://doi.org/10.1016/j.cej.2011.02.065
  15. T. Dong, H. Luo, Y. Wang, B. Hu, H. Chen, Desalination 271 (2011) 11. https://doi.org/10.1016/j.desal.2010.12.003
  16. L. Alidokht, A.R. Khataee, A. Reyhanitabar, S. Oustan, Desalination 270 (2011) 105. https://doi.org/10.1016/j.desal.2010.11.028
  17. T.P. Sun, X.Q. Li, W.X. Zhang, H.P. Wang, Colloid Surf. A 308 (2007) 60. https://doi.org/10.1016/j.colsurfa.2007.05.029
  18. T. Cosgrove, Colloid science-principle, methods, and applications, Blackwell, Oxford, 2005p. 50.
  19. B. Schrick, B.W. Hydutsky, J.L. Blough, T.E. Mallouk, Chem. Mater. 16 (2004) 2187. https://doi.org/10.1021/cm0218108
  20. T. Raychoudhury, G. Naja, S. Ghoshal, J. Contam. Hydrol. 118 (2010) 143. https://doi.org/10.1016/j.jconhyd.2010.09.005
  21. T. Phenrat, H. Kim, F. Fagerlund, T. Ilangasekare, R. Tilton, G.V. Lowry, Environ. Sci. Technol. 43 (2009) 5079. https://doi.org/10.1021/es900171v
  22. A. Tiraferri, R. Sethi, J. Nanopart. Res. 11 (2009) 635. https://doi.org/10.1007/s11051-008-9405-0
  23. Y. Tian, B. Gao, K.J. Ziegler, J. Hazard. Mater. 186 (2011) 1766. https://doi.org/10.1016/j.jhazmat.2010.12.072
  24. S.R. Kanel, H. Choi, Water Sci. Technol. 55 (2007) 157.
  25. N. Saleh, H. Kim, T. Phenrat, K. Matyjaszewski, R.D. Tilton, G.V. Lowry, Environ. Sci. Technol. 42 (2008) 3349. https://doi.org/10.1021/es071936b
  26. H.J. Kim, T. Phenrat, R.D. Tilton, G.V. Lowry, J. Colloid Interface Sci. 370 (2012) 1. https://doi.org/10.1016/j.jcis.2011.12.059
  27. A.J. Pelly, N. Tufenkji, J. Colloid Interface Sci. 321 (2008) 74. https://doi.org/10.1016/j.jcis.2008.01.046
  28. Y.Q. Liu, H. Choil, D. Dionysiou, G.V. Lowry, Chem. Mater. 17 (2005) 5315. https://doi.org/10.1021/cm0511217
  29. G.M. Litton, T.M. Olson, Colloid Surf A 107 (1996) 273. https://doi.org/10.1016/0927-7757(95)03343-2
  30. P.R. Johnson, N. Sun, M. Elimelech, Environ. Sci. Technol. 30 (1996) 3284. https://doi.org/10.1021/es960053+
  31. N. Sachoulchaicharoen, D.M. O'Carrol, J.E. Herrera, J. Contam. Hydrol. 118 (2010) 117. https://doi.org/10.1016/j.jconhyd.2010.09.004
  32. T. Phenrat, N. Saleh, K. Sirk, H.J. Kim, R.D. Tilton, G.V. Lowry, J. Nanopart. Res. 10 (2008) 795. https://doi.org/10.1007/s11051-007-9315-6
  33. F. He, D. Zhao, Environ. Sci. Technol. 41 (2007) 6216. https://doi.org/10.1021/es0705543
  34. Y.P. Sun, X.Q. Li, J.S. Cao, W.X. Zhang, H.P. Wang, Adv. Colloid Interface Sci. 120 (2006) 47. https://doi.org/10.1016/j.cis.2006.03.001
  35. T. Phenrat, N. Saleh, K. Sirk, R.D. Tilton, G.V. Lowry, Environ. Sci. Technol. 41 (2007) 284. https://doi.org/10.1021/es061349a
  36. S.M. Hosseini, T. Tosco, Water Res. 47 (2012) 326.
  37. S.A. Bradford, S.R. Yates, M. Bettahar, J. Simunek, Water Resour. Res. 38 (2002) 1327.
  38. S.A. Bradford, J. Simunek, M. Bettahar, M.T. van Genuchten, S.R. Yates, Environ. Sci. Technol. 37 (2003) 2242. https://doi.org/10.1021/es025899u
  39. N. Tufenkji, G.F. Miller, J.N. Ryan, R.W. Harvey, M. Elimelch, Environ. Sci. Technol. 38 (2004) 5932. https://doi.org/10.1021/es049789u
  40. S.A. Bradford, M. Bettahar, J. Contam. Hydrol. 89 (2006) 99.
  41. M. Tong, H. Ma, W.P. Johnson, Environ. Sci. Technol. 42 (2008) 2826. https://doi.org/10.1021/es071888v
  42. D. Liu, P.R. Johnson, M. Elimelech, Environ. Sci. Technol. 29 (1995) 2963. https://doi.org/10.1021/es00012a012
  43. T. Tosco, R. Sethi, Environ. Sci. Technol. 44 (2010) 9062. https://doi.org/10.1021/es100868n
  44. J.M. Brant, H. Lecoanet, M.R. Wiesner, J. Nanopart. Res. 7 (2005) 545. https://doi.org/10.1007/s11051-005-4884-8
  45. Y. Wang, Y. Li, J.D. Fortner, J.B. Hughes, L.M. Abriola, K.D. Pennell, Environ. Sci. Technol. 42 (2008) 3588. https://doi.org/10.1021/es800128m
  46. Y. Wang, Y. Li, K.D. Pennell, Environ. Toxicol. Chem. 27 (2008) 1867.
  47. M. Elimelech, J. Colloid Interface Sci. 164 (1994) 190. https://doi.org/10.1006/jcis.1994.1157
  48. T. Ben-mushe, I. Dror, B. Berkowitz, Chemosphere 81 (2010) 387. https://doi.org/10.1016/j.chemosphere.2010.07.007
  49. S. Bradford, S. Torkzaban, S. Walker, Water Res. 41 (2007) 3012. https://doi.org/10.1016/j.watres.2007.03.030
  50. K.M. Yao, M.T. Habibian, C.R. O'melia, Environ. Sci. Technol. 5 (1971) 1105. https://doi.org/10.1021/es60058a005
  51. D. Wang, S.A. Bradford, R.W. Harvey, X. Hao, D. Zhou, J. Hazard. Mater. 229-230 (2012) 170. https://doi.org/10.1016/j.jhazmat.2012.05.089
  52. G. Gargiulo, S. Bradford, J. Simunek, P. Ustohal, H. Vereeken, E. Klumpp, J. Contam. Hydrol 92 (3/4) (2007) 225-273.
  53. K. Shellenberger, B.E. Logan, Environ. Sci. Technol. 36 (2001) 184.
  54. K.L. Chen, M. Elimelech, Langmuir. 22 (2006) 10994. https://doi.org/10.1021/la062072v
  55. K.L. Chen, M. Elimelech, J. Colloid Interface Sci. 309 (2007) 126. https://doi.org/10.1016/j.jcis.2007.01.074
  56. J.S. Yoon, J.T. Germaine, P.J. Culligan, Water Resour. Res. 42 (2006), http://dx.doi.org/10.1029/2004WR003660.
  57. C.M. Kocur, D.M. O'Carrol, B.M. Sleep, J. Contam. Hydrol. 145 (2013) 17. https://doi.org/10.1016/j.jconhyd.2012.11.001
  58. D. Rosicka, J. Sembera, Nanoscale. Res. Lett. 6 (2011) 10.
  59. S. Taneda, J. Phys. Soc. Jpn. 46 (1979) 1935. https://doi.org/10.1143/JPSJ.46.1935
  60. S. Torkzaban, H.N. Kim, J. Simunek, S.A. Bradford, Environ. Sci. Technol. 44 (2010) 1662. https://doi.org/10.1021/es903277p
  61. R. Vaidyanathan, C. Tien, Chem. Eng. Sci. 43 (1988) 289. https://doi.org/10.1016/0009-2509(88)85041-3
  62. D. Wang, M. Paradelo, S.A. Bradford, W.J.G.M. Peijenburg, L. Chu, D. Zhu, Water Res. 45 (2011) 5905. https://doi.org/10.1016/j.watres.2011.08.041

Cited by

  1. Synthesis and application of stabilized zero-valent iron nanoparticles for hexavalent chromium removal in saturated sand columns: experimental and modeling studies vol.57, pp.33, 2014, https://doi.org/10.1080/19443994.2015.1072842
  2. Experimental and modeling study on adsorption of cationic methylene blue dye onto mesoporous biochars prepared from agrowaste vol.57, pp.56, 2014, https://doi.org/10.1080/19443994.2016.1163736
  3. 원위치 반응존 공법 적용을 위한 대수층내 오염물질 및 환경영향인자의 계절 특성 평가 vol.21, pp.6, 2014, https://doi.org/10.7857/jsge.2016.21.6.192
  4. Modeling and optimization of nonylphenol removal from contaminated water media using a magnetic recoverable composite by artificial neural networks vol.75, pp.8, 2017, https://doi.org/10.2166/wst.2016.523
  5. Transport of green synthetic iron nanoparticles in porous media: effect of injecting concentration and flow velocity vol.199, pp.None, 2014, https://doi.org/10.1088/1755-1315/199/3/032052
  6. Mobility of Polyethylene Glycol-Modified Urethane Acrylate (PMUA) Nanoparticles in Soils vol.141, pp.None, 2014, https://doi.org/10.1051/e3sconf/202014101002
  7. Effect of humic acid on the sedimentation and transport of nanoparticles silica in water-saturated porous media vol.20, pp.2, 2020, https://doi.org/10.1007/s11368-019-02444-x
  8. Transport of engineered nanoparticles in porous media and its enhancement for remediation of contaminated groundwater vol.50, pp.22, 2014, https://doi.org/10.1080/10643389.2019.1694823
  9. Transport and retention of graphene oxide nanoparticles in sandy and carbonaceous aquifer sediments: Effect of physicochemical factors and natural biofilm vol.278, pp.1, 2014, https://doi.org/10.1016/j.jenvman.2020.111419
  10. Transport and retention of porous silicon-coated zero-valent iron in saturated porous media vol.276, pp.None, 2021, https://doi.org/10.1016/j.envpol.2021.116700