DOI QR코드

DOI QR Code

Surface modification of heterogeneous cation exchange membrane through simultaneous using polymerization of PAA and multi walled carbon nano tubes

  • Moghadassi, A.R. (Department of Chemical Engineering, Faculty of Engineering, Arak University) ;
  • Koranian, P. (Department of Chemical Engineering, Faculty of Engineering, Arak University) ;
  • Hosseini, S.M. (Department of Chemical Engineering, Faculty of Engineering, Arak University) ;
  • Askari, M. (Department of Chemical Engineering, Faculty of Engineering, Arak University) ;
  • Madaeni, S.S. (Membrane Research Centre, Department of Chemical Engineering, Faculty of Engineering, Razi University)
  • Received : 2013.07.03
  • Accepted : 2013.10.30
  • Published : 2014.09.25

Abstract

Polyvinylchloride based heterogeneous cation exchange membrane was modified by using in situ polymerization of polyacrylic acid and multi walled carbon nano tubes simultaneously. Spectra analysis confirmed graft polymerization decisively. SEM images illustrated that grafted-PAA/MWCNTs filled the cracks in membrane by simple gel network entanglement. Ion exchange capacity was improved by PAA/MWCNTs grafting in modified membranes. Membrane water content was decreased by PAA grafting and then showed increasing trend by using MWCNTs in modifier solution up to 0.1%wt. Water content was decreased again by more MWCNTs loading ratio. Grafted-PAA membranes showed lower membrane potential, transport number, selectivity and flux compared to pristine membrane in sodium chloride ionic solution. These parameters were decreased more by using MWCNTs up to 0.1%wt in modifier solution and then showed increasing trend by more MWCNTs concentration from 0.1 to 0.3%wt. All mentioned parameters were declined again by more increase in MWCNTs content from 0.3 to 1.0%wt. Results exhibited lower membrane selectivity for the modified membranes compared to pristine ones in bivalent ionic solution. The grafted-PAA/MWCNTs modified membranes also showed lower electrical resistance compared to unmodified ones. Obtained results showed different behavior for permeability in bivalent ionic solution compared to monovalent type.

Keywords

Acknowledgement

Supported by : Arak University

References

  1. F R.W. Baker, Membrane Technology and Applications, 2nd ed., John Wiley & Sons Ltd, England, 2004.
  2. A. Elattar, A. Elmidaoui, N. Pismenskaia, C. Gavach, G. Pourcelly, Journal of Membrane Science 143 (1998) 249-261. https://doi.org/10.1016/S0376-7388(98)00013-1
  3. P.V. Vyas, P. Ray, S.K. Adhikary, B.G. Shah, R. Rangarajan, Journal of Colloid and Interface Science 257 (2003) 127-134. https://doi.org/10.1016/S0021-9797(02)00025-5
  4. R.K. Nagarale, G.S. Gohil, V.K. Shahi, G.S. Trivedi, R. Rangarajan, Journal of Colloid and Interface Science 277 (2004) 162-171. https://doi.org/10.1016/j.jcis.2004.04.027
  5. S.M. Hosseini, S.S. Madaeni, A.R. Khodabakhshi, Journal of Membrane Science 351 (2010) 178-188. https://doi.org/10.1016/j.memsci.2010.01.045
  6. E. Volodina, N. Pismenskaya, V. Nikonenko, C. Larchet, G. Pourcelly, Journal of Colloid and Interface Science 285 (2005) 247-258. https://doi.org/10.1016/j.jcis.2004.11.017
  7. R.K. Nagarale, V.K. Shahi, R. Schubert, R. Rangarajan, R. Mehnert, Journal of Colloid and Interface Science 270 (2004) 446-454. https://doi.org/10.1016/j.jcis.2003.08.061
  8. G.J. Hwang, H. Ohya, T. Nagai, Journal of Membrane Science 156 (1999) 61-65. https://doi.org/10.1016/S0376-7388(98)00331-7
  9. M.Y. Kariduraganavar, R.K. Nagarale, A.A. Kittur, S.S. Kulkarni, Desalination 197 (2006) 225-246. https://doi.org/10.1016/j.desal.2006.01.019
  10. M'C.O. Bareck, Q.T. Nguyen, S. Alexandre, I. Zimmerlin, Journal of Membrane Science 278 (2006) 10-18. https://doi.org/10.1016/j.memsci.2005.10.058
  11. T. Xu, Journal of Membrane Science 263 (2005) 1-29. https://doi.org/10.1016/j.memsci.2005.05.002
  12. J. Schauer, L. Brozova, Journal of Membrane Science 250 (2005) 151-157. https://doi.org/10.1016/j.memsci.2004.09.047
  13. S. Koter, A. Warszawski, Polish Journal of Environmental Studies 9/1 (2000) 45-56.
  14. R.K. Nagarale, G.S. Gohil, V.K. Shahi, Advanced in Colloid and Interface Science 119 (2006) 97-130. https://doi.org/10.1016/j.cis.2005.09.005
  15. J. Kerres, W. Cui, R. Disson, W. Neubrand, Journal of Membrane Science 139 (1998) 211-225. https://doi.org/10.1016/S0376-7388(97)00253-6
  16. X. Li, Z. Wang, H. Lu, C. Zhao, H. Na, C. Zhao, Journal of Membrane Science 254 (2005) 147-155. https://doi.org/10.1016/j.memsci.2004.12.051
  17. S.S. Madaeni, F. Heidary, Applied Surface Science 257 (2011) 4870-4876. https://doi.org/10.1016/j.apsusc.2010.12.128
  18. A.R. Khodabakhshi, S.S. Madaeni, S.M. Hosseini, Separation and Purification Technology 77 (2011) 220-229. https://doi.org/10.1016/j.seppur.2010.12.009
  19. R.K. Nagarale, G.S. Gohil, V.K. Shahi, R. Rangarajan, Colloids and Surfaces A: Physicochemical and Engineering Aspects 251 (2004) 133-140. https://doi.org/10.1016/j.colsurfa.2004.09.028
  20. R.K. Nagarale, V.K. Shahi, S.K. Thampy, R. Rangarajan, Reactive & Functional Polymers 61 (2004) 131-138. https://doi.org/10.1016/j.reactfunctpolym.2004.04.007
  21. S.M. Hosseini, S.S. Madaeni, A.R. Khodabakhshi, Preparation, Separation Science and Technology 46 (2011) 794-808. https://doi.org/10.1080/01496395.2010.534122
  22. A.R. Khodabakhshi, S.S. Madaeni, S.M. Hosseini, Journal of Applied Polymer Science 120 (2011) 644-656. https://doi.org/10.1002/app.33206
  23. S.M. Hosseini, A. Gholami, S.S. Madaeni, A.R. Moghadassi, A.R. Hamidi, Desalination 306 (2012) 51-59. https://doi.org/10.1016/j.desal.2012.07.028
  24. S.M. Hosseini, S.S. Madaeni, A.R. Khodabakhshi, Journal of Applied Polymer Science 118 (2010) 3371-3383. https://doi.org/10.1002/app.32369
  25. S.M. Hosseini, S.S. Madaeni, A.R. Khodabakhshi, Journal of Membrane Science 362 (2010) 550-559. https://doi.org/10.1016/j.memsci.2010.07.015
  26. V.K. Shahi, S.K. Thampy, R. Rangarajan, Journal of Membrane Science 158 (1999) 77-83. https://doi.org/10.1016/S0376-7388(99)00029-0
  27. L. Yan, Y.S. Li, C.B. Xiang, S. Xianda, Journal of Membrane Science 276 (2006) 162-167. https://doi.org/10.1016/j.memsci.2005.09.044
  28. X. Zuo, S. Yu, X. Xu, J. Xu, R. Bao, X. Yan, Journal of Membrane Science 340 (2009) 206-213. https://doi.org/10.1016/j.memsci.2009.05.032
  29. B.G. Shah, V.K. Shahi, S.K. Thampy, R. Rangarajan, P.K. Ghosh, Desalination 172 (2005) 257-265. https://doi.org/10.1016/j.desal.2004.06.204
  30. T. Sata, Ion Exchange Membranes: Preparation, Characterization Modification and Application, The Royal Society of Chemistry, Cambridge, United Kingdom, 2004 .
  31. S.M. Hosseini, S.S. Madaeni, A.R. Khodabakhshi, Journal of Membrane Science 365 (2010) 438-446. https://doi.org/10.1016/j.memsci.2010.09.043
  32. A. Rahimpour, S.S. Madaeni, S. Zereshki, Y. Mansourpanah, Applied Surface Science 255 (2009) 7455-7461. https://doi.org/10.1016/j.apsusc.2009.04.021
  33. B. Deng, M. Yu, X. Yang, B. Zhang, L. Li, L. Xie, J. Li, X. Lu, Journal of Membrane Science 350 (2010) 252-258. https://doi.org/10.1016/j.memsci.2009.12.035
  34. M.J. Han, G.B. Barona, B. Jung, Desalination 270 (2011) 76-83. https://doi.org/10.1016/j.desal.2010.11.024
  35. Z. Xu, J. Wang, L. Shen, D. Men, Y. Xu, Journal of Membrane Science 196 (2002) 221-229. https://doi.org/10.1016/S0376-7388(01)00600-7
  36. D.R. Lloyd (Ed.), Material Science of Synthetic Membranes, ACS Symposium Series 269, American Chemical Society, Washington, DC, 1985 (Chapter 1).
  37. W.R. Bowen, N. Hilal, R.W. Lovitt, C.J. Wright, Journal of Membrane Science 154 (1999) 205. https://doi.org/10.1016/S0376-7388(98)00287-7
  38. S.S. Madaeni, S. Zinadini, V. Vatanpour, Journal of Membrane Science 380 (2011) 155-162. https://doi.org/10.1016/j.memsci.2011.07.006
  39. P. Daraei, S.S. Madaeni, N. Ghaemi, H. Ahmadi Monfared, M.A. Khadivi, Separation and Purification Technology 104 (2013) 32-44. https://doi.org/10.1016/j.seppur.2012.11.004
  40. C.M. Chan, Polymer Surface Modification and Characterization, Hanser (Carl), Munich, 1994.
  41. M. Kogure, H. Ohya, R. Paterson, M. Hosaka, J. Kim, S. McFadzean, Journal of Membrane Science 126 (1997) 161-165. https://doi.org/10.1016/S0376-7388(96)00289-X
  42. S. Kim, T.W. Pechar, E. Marand, Desalination 192 (2006) 330-339. https://doi.org/10.1016/j.desal.2005.03.098
  43. Y. Tanaka, Ion Exchange Membranes: Fundamentals and Applications, Membrane Science and Technology Series 12, Elsevier, Netherlands, 2007.
  44. G.S. Gohil, V.V. Binsu, V.K. Shahi, Journal of Membrane Science 280 (2006) 210-218. https://doi.org/10.1016/j.memsci.2006.01.020
  45. R.K. Nagarale, V.K. Shahi, R. Rangarajan, Journal of Membrane Science 248 (2005) 37-44. https://doi.org/10.1016/j.memsci.2004.09.025
  46. D.R. Lide, CRC Handbook of Chemistry and Physics, 87th ed., CRC Press, 2006-2007.
  47. M.S. Kang, Y.J. Choi, I.J. Choi, T.H. Yoon, S.H. Moon, Journal of Membrane Science 216 (2003) 39-53. https://doi.org/10.1016/S0376-7388(03)00045-0
  48. C.E. Powell, G.G. Qiao, Journal of Membrane Science 279 (2006) 1-49. https://doi.org/10.1016/j.memsci.2005.12.062
  49. P. Dlugolecki, K. Nymeijer, S. Metz, M. Wessling, Journal of Membrane Science 319 (2008) 214-222. https://doi.org/10.1016/j.memsci.2008.03.037
  50. S.M. Hosseini, S.S. Madaeni, A.R. Khodabakhshi, Separation Science and Technology 45 (2010) 2308-2321. https://doi.org/10.1080/01496395.2010.497792

Cited by

  1. Polyvinylidene Fluoride (PVDF) 양이온 불균질막 제조 및 이온선택 흡착 특성 vol.25, pp.5, 2014, https://doi.org/10.14579/membrane_journal.2015.25.5.431
  2. Surface modification of ion-exchange membranes: Methods, characteristics, and performance vol.134, pp.48, 2017, https://doi.org/10.1002/app.45540
  3. Monovalent cation perm-selective membranes (MCPMs): New developments and perspectives vol.25, pp.11, 2014, https://doi.org/10.1016/j.cjche.2017.06.002
  4. Heterogeneous structure and its effect on properties and electrochemical behavior of ion-exchange membrane vol.4, pp.2, 2014, https://doi.org/10.1088/2053-1591/aa5cd4
  5. Effect of hydrophilic additive and PVC polymerization degree on morphology and electrochemical properties of PVC‐based heterogeneous cation‐exchange membrane vol.135, pp.39, 2014, https://doi.org/10.1002/app.46690
  6. Review of nanomaterials-assisted ion exchange membranes for electromembrane desalination vol.1, pp.1, 2014, https://doi.org/10.1038/s41545-018-0009-7
  7. Electrochemical Properties of Chemically Treated Polyvinylchloride‐Based Heterogeneous Cation‐Exchange Membrane vol.59, pp.suppl1, 2014, https://doi.org/10.1002/pen.24926
  8. Improving electrochemical properties of cation exchange membranes by using activated carbon-co-chitosan composite nanoparticles in water deionization vol.25, pp.3, 2019, https://doi.org/10.1007/s11581-018-2724-y
  9. Desalination and heavy metal ion removal from water by new ion exchange membrane modified by synthesized NiFe2O4/HAMPS nanocomposite vol.25, pp.8, 2019, https://doi.org/10.1007/s11581-019-02937-2
  10. Improvements in heterogeneous cation exchange membranes by incorporation of Fe2O3 nanoparticles vol.25, pp.10, 2014, https://doi.org/10.1007/s11581-019-03045-x
  11. Heterogeneous ion exchange membranes based on thermoplastic polyurethane (TPU): effect of PSS/DVB resin on morphology and electrodialysis vol.10, pp.6, 2014, https://doi.org/10.1039/c9ra06178a