DOI QR코드

DOI QR Code

Improvement single-wall carbon nanotubes (SWCNTs) based on functionalizing with monomers 2-hydroxyethylmethacryate (HEMA) and N-vinylpyrrolidone (NVP) for pharmaceutical applications as cancer therapy

  • Abbaszadeh, Fatemeh (Department of Chemistry, Shahre Qods Branch, Islamic Azad University) ;
  • Moradi, Omid (Department of Chemistry, Shahre Qods Branch, Islamic Azad University) ;
  • Norouzi, Mehdi (Department of Virology, School of Public Health, Tehran University of Medical Sciences) ;
  • Sabzevari, Omid (Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences)
  • Received : 2013.10.18
  • Accepted : 2013.11.04
  • Published : 2014.09.25

Abstract

The functionalized carbon nanotubes play significant roles in the fields such as preparation of composite materials and biological technologies. This paper explains the covalent functionalization of single-wall carbon nanotubes (SWCNTs) with biomedical important monomers, 2-hydroxyethylmethacryate (HEMA) and N-vinylpyrrolidone (NVP) by chemical grafting of HEMA and PVP monomers via free radical polymerization. To get carboxylic acid functionalized SWCNTs, first the nanotubes were oxidized with a mixture of nitric acid and sulfuric acid (1:3). Then, the binding of HEMA and NVP onto the surface of SWCNTs was performed by chemical functionalization of HEMA, NVP with acid chloride-bound carbon nanotube by esterification reaction. These results were confirmed by FT-IR and SEM. The cell culture experiments conducted for pharmaceutical applications were used as cancer therapy.

Keywords

References

  1. S. Beg, M. Rizwan, A.M. Sheikh, M.S. Hasnain, Kh. Anwer, K. Kohli, J. Pharm. Pharmacol. 63 (2011) 141. https://doi.org/10.1111/j.2042-7158.2010.01167.x
  2. J. Roblesa, M.J.L. Opez, J.A. Alonso, Eur. Phys. J. D. (2011) 381.
  3. B. Kakade, S. Patil, S. Sathe, S. Gokhale, V. Pillai, J. Chem. Sci. 120 (2008) 599. https://doi.org/10.1007/s12039-008-0091-3
  4. F. Najafi, J. Nanostruct. Chem. 3 (2013) 23. https://doi.org/10.1186/2193-8865-3-23
  5. F. Wang, K.J. Deng, L. Zhou, J.B. Zhao, X.H. Ke, L.L. Wen, J. Inorg. Organomet. Polymer. 22 (2012) 1182. https://doi.org/10.1007/s10904-012-9689-5
  6. S. Manivannan, I.O. Jeong, J.H. Ryu, C.S. Lee, K.S. Kim, J. Jang, K.C. Park, J. Mater. Sci. Mater. Electron. 20 (2009) 223.
  7. A.R. Vahdati, B. Sadeghi, J. Nanostruct. Chem. 3 (2013) 7. https://doi.org/10.1186/2193-8865-3-7
  8. T. Ogoshi, T. Saito, T.A. Yamagishi, Y. Nakamoto, Carbon 47 (2009) 117. https://doi.org/10.1016/j.carbon.2008.09.036
  9. T. Ogoshi, T. Saito, T. Yamagishi, Y. Nakamoto, Carbon 47 (2009) 117. https://doi.org/10.1016/j.carbon.2008.09.036
  10. Sh.Z. Zu, X.X. Sun, D. Zhou, B.H.J. Han, Carbon 49 (2011) 5339. https://doi.org/10.1016/j.carbon.2011.07.056
  11. A.P. Pino, E. Gyorgy, L. Cabana, B. Ballesteros, G. Tobias, Carbon 50 (2012) 4450. https://doi.org/10.1016/j.carbon.2012.05.023
  12. B.C. Thompson, S.E. Moulton, K.J. Gilmore, M.J. Higgins, P.G. Whitten, G.G. Wallace, Carbon 47 (2009) 1282. https://doi.org/10.1016/j.carbon.2009.01.013
  13. H. Li, D.Q. Wang, B.L. Liu, L.Z. Gao, Colloids Surf., B 33 (2004) 85. https://doi.org/10.1016/j.colsurfb.2003.08.014
  14. F.M. Blighe, K. Young, J.J. Vilatela, A.H. Windle, I.A. Kinloch, L. Deng, R.J. Young, J.N. Coleman, Adv. Funct. Mater. 21 (2011) 364. https://doi.org/10.1002/adfm.201000940
  15. Z. Spitalskya, D. Tasisb, K. Papagelis, C. Galiotis, Prog. Polym. Sci. 35 (2010) 357. https://doi.org/10.1016/j.progpolymsci.2009.09.003
  16. M. Sirousazar, M.Z. Kokabi, M. Hassan, A.R. Bahramian, J. Macromol. Sci., Phys. 51 (2012) 1335. https://doi.org/10.1080/00222348.2011.629870
  17. A. Montazeri, R. Naghdabadi, J. Appl. Polym. Sci. 117 (2009) 361.
  18. L. Zhang, F. Rakotondradany, A.J. Myles, H. Fenniri, T.J. Webster, Biomaterials 30 (2009) 1309. https://doi.org/10.1016/j.biomaterials.2008.11.020
  19. J.S. Im, J. Yun, Y.M. Lim, H.I. Kim, Y.S. Lee, Acta Biomater. 6 (2010) 102. https://doi.org/10.1016/j.actbio.2009.06.017
  20. O. Breuer, U. Sundaraj, Soc. Plast. Eng. 25 (2004) 630.
  21. F.J. Xu, W.T. Yang, Prog. Polym. Sci. 36 (2011) 1099. https://doi.org/10.1016/j.progpolymsci.2010.11.005
  22. A.A. Rodrigues, N.A. Batista, V.P. Bavaresco, V. Baranauskas, H.J. Ceragioli, A.C. Peterlevitz, A.R. Santos Jr., W.D. Belangero, Carbon 50 (2012) 450. https://doi.org/10.1016/j.carbon.2011.08.071
  23. I.M. El-Sherbiny, F.M. Reicha, J. Nanostruct. Chem. 3 (2013) 8. https://doi.org/10.1186/2193-8865-3-8
  24. J. Prasad Rao, K.E. Geckeler, Prog. Polym. Sci. 36 (2011) 887. https://doi.org/10.1016/j.progpolymsci.2011.01.001
  25. S.G. Lee, G.F. Brunello, S.S. Jang, J.H. Lee, D.G. Bucknall, J. Phys. Chem. B. 113 (2009) 6604. https://doi.org/10.1021/jp8058867
  26. Y. Kobayashi, H. Morimoto, T. Nakagawa, Y. Kubota, K. Gonda, N. Ohuchi, J. Nanostruct. Chem. 3 (2013) 11. https://doi.org/10.1186/2193-8865-3-11
  27. M.D. Guzman, P.Y. Liu, J.T. Chen, K.L. Tung, K.R. Lee, J.Y. Lai, J. Membrane Sci. 378 (2011) 503. https://doi.org/10.1016/j.memsci.2011.05.035
  28. D.F. Stamatialis, B.J. Papenburg, M. Girones, S. Saiful, S.N.M. Bettahalli, S. Schmitmeier, M. Wessling, J. Membrane Sci. 308 (2008) 1. https://doi.org/10.1016/j.memsci.2007.09.059
  29. Ch.F. Huang, Sh.W. Kuo, F.J. Lin, Ch.F. Wang, Ch.J. Hung, F.Ch. Chang, Polymer 4 (2006) 7060.
  30. R. Barve, R. Chaughule, J. Nanostruct. Chem. 3 (2013) 18. https://doi.org/10.1186/2193-8865-3-18
  31. A. Oral, M.A. Tasdelen, A.L. Demirel, Y. Yagci, Polymer 50 (2009) 3905. https://doi.org/10.1016/j.polymer.2009.06.020
  32. J.K. Oh, R. Drumright, D.J. Siegwart, K. Matyjaszewski, Prog. Polym. Sci. 33 (2008) 448. https://doi.org/10.1016/j.progpolymsci.2008.01.002
  33. N.A. Kumar, H.S. Ganapathy, J.S. Kim, Y.S. Jeong, Y.T. Jeong, Eur. Polym. J. 44 (2008) 579. https://doi.org/10.1016/j.eurpolymj.2007.12.009
  34. H. Montazeri, A. Amani, H. Shahverdi, E. Haratifar, A. Shahverdi, J. Nanostruct. Chem. 3 (2013) 25. https://doi.org/10.1186/2193-8865-3-25
  35. M. Hesabi, M. Hesabi, J. Nanostruct. Chem. 3 (2013) 22. https://doi.org/10.1186/2193-8865-3-22

Cited by

  1. Poly(vinylpyrrolidone) - A Versatile Polymer for Biomedical and Beyond Medical Applications vol.54, pp.9, 2014, https://doi.org/10.1080/03602559.2014.979506
  2. Influence of Mo or Cu doping in Fe/MgO catalyst for synthesis of single-walled carbon nanotubes by catalytic chemical vapor deposition of methane vol.25, pp.4, 2014, https://doi.org/10.1080/1536383x.2017.1283619
  3. Kinetics and Mechanism of Synthesis of Carboxyl-Containing N-Vinyl-2-Pyrrolidone Telehelics for Pharmacological Use vol.13, pp.15, 2021, https://doi.org/10.3390/polym13152569
  4. A DFT study on the Ag-decorated AlP nanosheets as chemical sensor for recognition of adrucil drug vol.1206, pp.None, 2014, https://doi.org/10.1016/j.comptc.2021.113484
  5. Sensing behavior of pure and Ni-doped BC3 to chlorine trifluoride: A computational survey vol.163, pp.None, 2014, https://doi.org/10.1016/j.jpcs.2021.110530