DOI QR코드

DOI QR Code

Uptake of Reactive Black 5 by pumice and walnut activated carbon: Chemistry and adsorption mechanisms

  • Heibati, Behzad (Health Science Research Center, Faculty of Health, Mazandaran University of Medical Sciences) ;
  • Rodriguez-Couto, Susana (CEIT, Unit of Environmental Engineering) ;
  • Amrane, Abdeltif (Ecole Nationale Superieure de Chimie de Rennes, Universite de Rennes 1) ;
  • Rafatullah, Mohd. (School of Industrial Technology, University Sains Malaysia) ;
  • Hawari, Alaa (Department of Civil and Architectural Engineering, College of Engineering, Qatar University) ;
  • Al-Ghouti, Mohammad A. (Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University)
  • Received : 2013.05.18
  • Accepted : 2013.10.30
  • Published : 2014.09.25

Abstract

The potential of using pumice and walnut wood activated carbon as low-cost adsorbents for the removal of the diazo dye Reactive Black 5 (RB5) from aqueous solutions was investigated. The Langmuir isotherm fit to the data specified the presence of two different natures of adsorption sites with different binding energies on the AC-W surface. Kinetic modelling showed that the adsorption behaviour and mechanism of RB5 for both adsorbents is believed to happen via surface adsorption followed by diffusion into the pores of the AC-W and pumice. The main adsorption mechanisms are hydrogen bonding, electrostatic bonding and n-${\pi}$ interactions.

Keywords

References

  1. B. Qu, J. Zhou, X. Xiang, C. Zheng, H. Zhao, X. Zhou, J. Environ. Sci. 20 (2008) 704. https://doi.org/10.1016/S1001-0742(08)62116-6
  2. H. Zhang, L. Duan, Y. Zhang, F. Wu, Dyes Pigments 65 (2005) 39. https://doi.org/10.1016/j.dyepig.2004.06.015
  3. A.H. Mahvi, B. Heibati, Res. J. Chem. Environ. 16 (2012) 62.
  4. F. Colak, N. Atar, A. Olgun, Chem. Eng. J. 150 (2009) 122. https://doi.org/10.1016/j.cej.2008.12.010
  5. C.M. Carliell, S.J. Barclay, C. Shaw, A.D. Wheatley, C.A. Buckley, Environ. Technol. 19 (1998) 1133. https://doi.org/10.1080/09593331908616772
  6. A.A. Atia, A.M. Donia, W.A. Al-Amrani, Chem. Eng. J. 150 (2009) 55. https://doi.org/10.1016/j.cej.2008.12.004
  7. R. Jiraratananon, A. Sungpet, P. Luangsowan, Desalination 130 (2000) 177. https://doi.org/10.1016/S0011-9164(00)00085-0
  8. P. Puttamraju, A.K. SenGupta, Ind. Eng. Chem. Res. 45 (2006) 7737. https://doi.org/10.1021/ie060803g
  9. H. Wang, J.Q. Su, X.W. Zheng, Y. Tian, X.J. Xiong, T.L. Zheng, Int. Biodeterior. Biodegradation 63 (2009) 395. https://doi.org/10.1016/j.ibiod.2008.11.006
  10. X. Zhao, Y. Shi, Y. Cai, S. Mou, Environ. Sci. Technol. 42 (2008) 1201. https://doi.org/10.1021/es071817w
  11. N. Dafale, N.N. Rao, S.U. Meshram, S.R. Wate, Bioresour. Technol. 99 (2008) 2552. https://doi.org/10.1016/j.biortech.2007.04.044
  12. Y. Fu, T. Viraraghavan, Bioresour. Technol. 79 (2001) 251. https://doi.org/10.1016/S0960-8524(01)00028-1
  13. C. Junghanns, G. Krauss, D. Schlosser, Bioresour. Technol. 99 (2008) 1225. https://doi.org/10.1016/j.biortech.2007.02.015
  14. G. McMullan, C. Meehan, A. Conneely, N. Kirby, T. Robinson, P. Nigam, I. Banat, R. Marchant, W. Smyth, Appl. Microbiol. Biotechnol. 56 (2001) 81. https://doi.org/10.1007/s002530000587
  15. C. Pearce, J. Lloyd, J. Guthrie, Dyes Pigments 58 (2003) 179. https://doi.org/10.1016/S0143-7208(03)00064-0
  16. T. Robinson, G. McMullan, R. Marchant, P. Nigam, Bioresour. Technol. 77 (2001) 247. https://doi.org/10.1016/S0960-8524(00)00080-8
  17. A. Stolz, Appl. Microbiol. Biotechnol. 56 (2001) 69. https://doi.org/10.1007/s002530100686
  18. Q. Yang, C. Li, H. Li, Y. Li, N. Yu, Biochem. Eng. J. 43 (2009) 225. https://doi.org/10.1016/j.bej.2008.10.002
  19. D. Chebli, F. Fourcade, S. Brosillon, S. Nacef, A. Amrane, J. Chem. Technol. Biotechnol. 85 (2010) 555.
  20. A. Pandey, P. Singh, L. Iyengar, Int. Biodeterior. Biodegradation 59 (2007) 73. https://doi.org/10.1016/j.ibiod.2006.08.006
  21. C. Comninellis, A. Kapalka, S. Malato, S.A. Parsons, I. Poulios, D. Mantzavinos, J. Chem. Technol. Biotechnol. 83 (2008) 769. https://doi.org/10.1002/jctb.1873
  22. P.C. Vandevivere, R. Bianchi, W. Verstraete, J. Chem. Technol. Biotechnol. 72 (1999) 289.
  23. G. Crini, P.M. Badot, Prog. Polym. Sci. 33 (2008) 399. https://doi.org/10.1016/j.progpolymsci.2007.11.001
  24. S.G. Wang, Y. Ma, Y.J. Shi, W.X. Gong, J. Chem. Technol. Biotechnol. 84 (2009) 1043. https://doi.org/10.1002/jctb.2131
  25. P. Janos, H. Buchtova, M. Ryznarova, Water Res. 37 (2003) 4938. https://doi.org/10.1016/j.watres.2003.08.011
  26. F. Akbal, J. Colloid Interface Sci. 286 (2005) 455. https://doi.org/10.1016/j.jcis.2005.01.036
  27. V. Gupta, J. Environ. Manage. 90 (2009) 2313. https://doi.org/10.1016/j.jenvman.2008.11.017
  28. M. Kitis, S. Kaplan, E. Karakaya, N. Yigit, G. Civelekoglu, Chemosphere 66 (2007) 130. https://doi.org/10.1016/j.chemosphere.2006.05.002
  29. M. Rafatullah, T. Ahmad, A. Ghazali, O. Sulaiman, M. Danish, R. Hashim, Crit. Rev. Environ. Sci. Technol. 43 (11) (2013) 1117-1161. https://doi.org/10.1080/10934529.2011.627039
  30. M.A. Al-Ghouti, M.A.M. Khraisheh, S.J. Allen, M.N. Ahmad, J. Environ. Manage. 69 (2003) 229. https://doi.org/10.1016/j.jenvman.2003.09.005
  31. M.A. Al-Ghouti, Y.S. Al-Degs, F.I. Khalili, Chem. Eng. J. 162 (2010) 669. https://doi.org/10.1016/j.cej.2010.06.019
  32. B. Hameed, A.T.M. Din, A. Ahmad, J. Hazard. Mater. 141 (2007) 819. https://doi.org/10.1016/j.jhazmat.2006.07.049
  33. M. Amir Hossein, H. Behzad, Y. Ahmad Reza, V. Najmeh, Res. J. Chem. Environ. 16 (2012) 26.
  34. J.F. Osma, V. Saravia, J.L. Toca-Herrera, S. Rodrlguez Couto, J. Hazard. Mater. 147 (2007) 900. https://doi.org/10.1016/j.jhazmat.2007.01.112
  35. C. Namasivayam, D. Kavitha, Dyes Pigments 54 (2002) 47. https://doi.org/10.1016/S0143-7208(02)00025-6
  36. M.A. Al-Ghouti, J. Li, Y. Salamh, N. Al-Laqtah, G. Walker, M.N.M. Ahmad, J. Hazard. Mater. 176 (2010) 510. https://doi.org/10.1016/j.jhazmat.2009.11.059
  37. A. Bhatnagar, E. Kumar, M. Sillanpaa, Chem. Eng. J. 163 (2010) 317. https://doi.org/10.1016/j.cej.2010.08.008
  38. A. Afkhami, M. Saber-Tehrani, H. Bagheri, J. Hazard. Mater. 181 (2010) 836. https://doi.org/10.1016/j.jhazmat.2010.05.089
  39. Z. Aksu, S. Tezer, Process Biochem. 36 (2000) 431. https://doi.org/10.1016/S0032-9592(00)00233-8
  40. O. Ozdemir, B. Armagan, M. Turan, M.S. Celik, Dyes Pigments 62 (2004) 49. https://doi.org/10.1016/j.dyepig.2003.11.007
  41. S. Renganathan, W.R. Thilagaraj, L.R. Miranda, P. Gautam, M. Velan, Bioresour. Technol. 97 (2006) 2189. https://doi.org/10.1016/j.biortech.2005.09.018
  42. Z. Eren, F.N. Acar, J. Hazard. Mater. 143 (2007) 226. https://doi.org/10.1016/j.jhazmat.2006.09.017
  43. R. Patel, S. Suresh, Bioresour. Technol. 99 (2008) 51. https://doi.org/10.1016/j.biortech.2006.12.003
  44. J.F. Osma, V. Saravia, J.L. Toca-Herrera, S.R. Couto, J. Hazard. Mater. 147 (2007) 900. https://doi.org/10.1016/j.jhazmat.2007.01.112
  45. Y.S. Ho, J. Hazard. Mater. 136 (2006) 681. https://doi.org/10.1016/j.jhazmat.2005.12.043
  46. H. Yuh-Shan, Scientometrics 59 (2004) 171. https://doi.org/10.1023/B:SCIE.0000013305.99473.cf
  47. S.J. Allen, G. Mckey, K.Y.H. Khadur, Environ. Pollut. 56 (1989) 39. https://doi.org/10.1016/0269-7491(89)90120-6
  48. M.A. Al-Ghouti, M.A.M. Khraisheh, M.N.M. Ahmad, S. Allen, J. Hazard. Mater. 165 (2009) 589. https://doi.org/10.1016/j.jhazmat.2008.10.018
  49. D. Mohan, K.P. Singh, Research 36 (2002) 2304.
  50. M.-S. Chiou, G.-S. Chuang, Chemosphere 62 (2006) 731. https://doi.org/10.1016/j.chemosphere.2005.04.068

Cited by

  1. Overlook of carbonaceous adsorbents and processing methods for elemental mercury removal vol.15, pp.4, 2014, https://doi.org/10.5714/cl.2014.15.4.238
  2. Adsorption of Reactive Black-5 by Pine Needles Biochar Produced Via Catalytic and Non-catalytic Pyrolysis vol.40, pp.5, 2014, https://doi.org/10.1007/s13369-015-1601-5
  3. Optimization of anionic dye adsorption onto Melia azedarach sawdust in aqueous solutions: effect of calcium cations vol.11, pp.2, 2014, https://doi.org/10.1002/apj.1962
  4. Equilibrium and Kinetic Studies of Trihalomethanes Adsorption onto Multi-walled Carbon Nanotubes vol.227, pp.9, 2014, https://doi.org/10.1007/s11270-016-3029-2
  5. Optimization of methylene blue adsorption by pumice powder vol.5, pp.1, 2014, https://doi.org/10.12989/aer.2016.5.1.037
  6. A review on pumice for water and wastewater treatment vol.57, pp.39, 2014, https://doi.org/10.1080/19443994.2015.1124348
  7. Adsorption of reactive dye from aqueous solution and synthetic dye bath wastewater by Eucalyptus bark/magnetite composite vol.74, pp.6, 2014, https://doi.org/10.2166/wst.2016.323
  8. Adsorption of methylene blue from aqueous solution onto activated carbons developed from eucalyptus bark and Crataegus oxyacantha core vol.74, pp.9, 2016, https://doi.org/10.2166/wst.2016.287
  9. Preparation of activated carbon incorporated polysulfone membranes for dye separation vol.7, pp.6, 2014, https://doi.org/10.12989/mwt.2016.7.6.477
  10. Evaluation of Iron and Manganese-coated Pumice from Sungai Pasak, West Sumatera, Indonesia for the Removal of Fe (II) and Mn (II) from Aqueous Solutions vol.37, pp.None, 2014, https://doi.org/10.1016/j.proenv.2017.03.042
  11. Electrospun Zein Nanofiber as a Green and Recyclable Adsorbent for the Removal of Reactive Black 5 from the Aqueous Phase vol.5, pp.5, 2014, https://doi.org/10.1021/acssuschemeng.7b00402
  12. Removal of Basic Blue 41 dyes using Persea americana-activated carbon prepared by phosphoric acid action vol.8, pp.2, 2014, https://doi.org/10.1007/s40090-016-0090-z
  13. Preparation of environmentally friendly activated carbon for removal of pesticide from aqueous media vol.8, pp.2, 2014, https://doi.org/10.1007/s40090-017-0115-2
  14. Comparative Study of Different Activation Treatments for the Preparation of Activated Carbon: A Mini-Review vol.100, pp.3, 2017, https://doi.org/10.3184/003685017x14967570531606
  15. Modification of activated carbon via grafting polyethyleneimine to remove amaranth from water vol.7, pp.8, 2014, https://doi.org/10.1007/s13201-017-0557-x
  16. Equilibrium, Kinetic and Optimization Studies for the Adsorption of Tartrazine in Water onto Activated Carbon from Pecan Nut Shells vol.229, pp.3, 2014, https://doi.org/10.1007/s11270-017-3680-2
  17. Paraben degradation using catalytic ozonation over volcanic rocks vol.25, pp.8, 2014, https://doi.org/10.1007/s11356-017-1025-8
  18. Comparative Adsorption of Different Dyes from Aqueous Solutions onto Polymer Prepared by ROP: Kinetic, Equilibrium and Thermodynamic Studies vol.43, pp.7, 2018, https://doi.org/10.1007/s13369-017-2947-7
  19. One-Pot Synthesis and Combined Use of Modified Cotton Adsorbent and Flocculant for Purifying Dyeing Wastewater vol.6, pp.5, 2014, https://doi.org/10.1021/acssuschemeng.8b00713
  20. Facile synthesis of porous carbon sheets from potassium acetate via in-situ template and self-activation for highly efficient chloramphenicol removal vol.732, pp.None, 2014, https://doi.org/10.1016/j.jallcom.2017.10.237
  21. Fe3C/Fe/C Magnetic Hierarchical Porous Carbon with Micromesopores for Highly Efficient Chloramphenicol Adsorption: Magnetization, Graphitization, and Adsorption Properties Investigation vol.57, pp.10, 2014, https://doi.org/10.1021/acs.iecr.7b05300
  22. Adsorption Kinetics and Thermodynamics Study of Butylparaben on Activated Carbon Coconut Based vol.8, pp.2, 2018, https://doi.org/10.4236/jeas.2016.82003
  23. Preparation, characterization, and application of synthesized thiourea formaldehyde-calcium alginate in removal of Reactive Black 5 vol.96, pp.12, 2014, https://doi.org/10.1139/cjc-2017-0767
  24. Synthesis and surface gel‐adsorption effect of multidimensional cross‐linking cationic cotton for enhancing purification of dyeing wastewater vol.94, pp.1, 2014, https://doi.org/10.1002/jctb.5752
  25. Decolorization of Reactive Black 5 by Mesoporous Al2O3@TiO2 Nanocomposites vol.38, pp.suppl1, 2019, https://doi.org/10.1002/ep.12976
  26. Effective Parameters, Equilibrium, and Kinetics of Fluoride Adsorption on Prosopis cineraria and Syzygium cumini Leaves vol.38, pp.suppl1, 2014, https://doi.org/10.1002/ep.13118
  27. Preparation and Characterization of Shiitake Mushroom-Based Activated Carbon with High Adsorption Capacity vol.44, pp.6, 2014, https://doi.org/10.1007/s13369-019-03746-5
  28. Kinetics of Sulfur Removal from Tehran Vehicular Gasoline by g-C3N4/SnO2 Nanocomposite vol.4, pp.8, 2014, https://doi.org/10.1021/acsomega.9b01191
  29. Improved sorption of reactive black 5 by date seed-derived biochar: isotherm, kinetic, and thermodynamic studies vol.54, pp.15, 2019, https://doi.org/10.1080/01496395.2018.1547318
  30. Investigations on a dye desorption from modified biomass by using a low-cost eluent: hysteresis and mechanisms exploration vol.16, pp.11, 2014, https://doi.org/10.1007/s13762-018-2171-3
  31. Adsorptive removal of anionic dye (Reactive Black 5) from aqueous solution using chemically modified banana peel powder: kinetic, isotherm, thermodynamic, and reusability studies vol.22, pp.3, 2014, https://doi.org/10.1080/15226514.2019.1658709
  32. Use of aminated hulls of sunflower seeds for the removal of anionic dyes from aqueous solutions vol.17, pp.3, 2014, https://doi.org/10.1007/s13762-019-02536-8
  33. Response surface methodology approach for adsorptive removal of Reactive Blue 19 onto green pea pod vol.81, pp.6, 2014, https://doi.org/10.2166/wst.2020.199
  34. Adsorption of Reactive Blue-13, an Acidic Dye, from Aqueous Solution Using Magnetized Activated Carbon vol.65, pp.4, 2014, https://doi.org/10.1021/acs.jced.0c00081
  35. Low-Cost Route for Preparing Carbon-Silica Composite Mesoporous Material from Coal Gasification Slag: Synthesis, Characterization and Application in Purifying Dye Wastewater vol.45, pp.6, 2020, https://doi.org/10.1007/s13369-020-04383-z
  36. Characterization and application of poly-ferric-titanium-silicate-sulfate in disperse and reactive dye wastewaters treatment vol.249, pp.None, 2014, https://doi.org/10.1016/j.chemosphere.2020.126129
  37. Enhanced removal of the endocrine disruptor compound Bisphenol A by adsorption onto green-carbon materials. Effect of real effluents on the adsorption process vol.266, pp.None, 2014, https://doi.org/10.1016/j.jenvman.2020.110604
  38. Development of an Adsorbent for Bisphenol A Based on a Polymer Grafted from Microcrystalline Cellulose vol.231, pp.10, 2014, https://doi.org/10.1007/s11270-020-04861-y
  39. Molecular level separation of crude oil/water emulsion on carbon nanotube surface induced by weak interaction: a molecular dynamic simulation study vol.41, pp.13, 2014, https://doi.org/10.1080/01932691.2019.1645026
  40. Pb doped ZnO nanoparticles for the sorption of Reactive Black 5 textile azo dye vol.82, pp.11, 2014, https://doi.org/10.2166/wst.2020.501
  41. Removal of reactive black 5 dye by using polyoxometalate-membrane vol.12, pp.1, 2021, https://doi.org/10.12989/mwt.2021.12.1.023
  42. Chitosan-Clay Composites for Wastewater Treatment: A State-of-the-Art Review vol.1, pp.5, 2014, https://doi.org/10.1021/acsestwater.0c00207
  43. Development of Biochars Derived from Water Bamboo (Zizania latifolia) Shoot Husks Using Pyrolysis and Ultrasound-Assisted Pyrolysis for the Treatment of Reactive Black 5 (RB5) in Wastewater vol.13, pp.12, 2014, https://doi.org/10.3390/w13121615
  44. Biochars derived from bamboo and rice straw for sorption of basic red dyes vol.16, pp.7, 2014, https://doi.org/10.1371/journal.pone.0254637
  45. High-strength and low-swelling chitosan/cellulose microspheres as a high-efficiency adsorbent for dye removal vol.28, pp.14, 2021, https://doi.org/10.1007/s10570-021-04111-2
  46. Activated carbons from waste Cassia bakeriana seed pods as high-performance adsorbents for toxic anionic dye and ciprofloxacin antibiotic remediation vol.341, pp.None, 2014, https://doi.org/10.1016/j.biortech.2021.125832
  47. Process optimization and enhancement of pesticide adsorption by porous adsorbents by regression analysis and parametric modelling vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-91178-3
  48. Residual peel of pitaya fruit (Hylocereus undatus) as a precursor to obtaining an efficient carbon-based adsorbent for the removal of metanil yellow dye from water vol.10, pp.1, 2022, https://doi.org/10.1016/j.jece.2021.107006