DOI QR코드

DOI QR Code

Field emission enhancement of polypyrrole due to band bending induced tunnelling in polypyrrole-carbon nanotubes nanocomposite

  • Gupta, Namita Dutta (Thin Film and Nano Science Laboratory, Department of Physics, Jadavpur University) ;
  • Maity, Supratim (Thin Film and Nano Science Laboratory, Department of Physics, Jadavpur University) ;
  • Chattopadhyay, Kalyan Kumar (Thin Film and Nano Science Laboratory, Department of Physics, Jadavpur University)
  • Received : 2013.01.24
  • Accepted : 2013.11.19
  • Published : 2014.09.25

Abstract

Polypyrrole-multiwalled carbon nanotubes (PPy-MWCNT) nanocomposites with high field emission characteristics have been fabricated by a very simple and effective in situ chemical polymerization technique that bypasses the need of de-agglomerating the MWCNT. Based on structural characterization, we have proposed formation of a three tier structure of PPy-MWCNTs composite with granular PPy on the top. Field emission studies, explained on the basis of band bending at the PPy-MWCNT interface, show drastic increase of field enhancement factor (~4664) and low turn on field ($1.7V/{\mu}m$), opening new possibilities of improvement of PPy/PPy-MWCNT composites.

Keywords

References

  1. H. Dong, W. Hu, Encyclopedia of Radicals in Chemistry, Biology and Materials, Conducting Polymers: Applications in Electronics and Photovoltaics, John Wiley & Sons, Ltd, 2012.
  2. L. Pan, H. Qiu, C. Dou, Y. Li, L. Pu, J. Xu, Y. Shi, Int. J. Mol. Sci. 11 (2010) 2636-2657. https://doi.org/10.3390/ijms11072636
  3. S. Paul, J.H. Kim, D.W. Kim, J. Electrochem. Sci. Technol. 2 (2011) 91-96. https://doi.org/10.5229/JECST.2011.2.2.091
  4. J. Joo, S.J. Lee, D.H. Park, J.Y. Lee, T.J. Lee, S.H. Seo, C.J. Lee, Electrochem. Sol. Stat. Lett. 8 (2005) H39. https://doi.org/10.1149/1.1869152
  5. B.H. Kim, D.H. Park, J. Joo, S.G. Yu, S.H. Lee, Synth. Met. 150 (2005) 279-284. https://doi.org/10.1016/j.synthmet.2005.02.012
  6. H. Yan, L. Zhang, J. Shen, Z. Chen, G. Shi, B. Zhang, Nanotechnology 17 (2006) 3446-3450. https://doi.org/10.1088/0957-4484/17/14/017
  7. J. Joo, B.H. Kim, D.H. Park, H.S. Kim, D.S. Seo, J.H. Shim, S.J. Lee, K.S. Ryu, K. Kim, J.I. Jin, T.J. Lee, C.J. Lee, Synth. Met. 153 (2005) 313-316. https://doi.org/10.1016/j.synthmet.2005.07.221
  8. V. Branzoi, L. Pilan, F. Branzoi, Electroanalysis 21 (2009) 557-562. https://doi.org/10.1002/elan.200804449
  9. Y. Fanga, J. Liua, D.J. Yud, J.P. Wickstedd, K. Kalkane, C.O. Topale, B.N. Flandersb, J. Li, J. Power Sources 195 (2010) 674-679. https://doi.org/10.1016/j.jpowsour.2009.07.033
  10. J.H. Du, J. Bai, H.M. Cheng, Polym. Lett. 1 (2007) 253-273. https://doi.org/10.3144/expresspolymlett.2007.39
  11. K. Mylvaganam, L.C. Zhang, Recent Pat. Nanotechnol. 1 (2007) 59-65.
  12. I. Szleifera, R. Yerushalmi-Rozen, Polymer 46 (2005) 7803-7818. https://doi.org/10.1016/j.polymer.2005.05.104
  13. B. Zhang, Y. Xu, Y. Zheng, L. Dai, M. Zhang, J. Yang, Y. Chen, X. Chen, J. Zhou, Nanoscale. Res. Lett. 6 (2011) 431-439. https://doi.org/10.1186/1556-276X-6-431
  14. X. Zhang, S. Manohar, J. Am. Chem. Soc. 126 (2004) 12714-12715. https://doi.org/10.1021/ja046359v
  15. Y. Yu, C. Ouyang, Z. Si, W. Chen, Z. Wang, G. Wang, J. Polym. Sci A Polym. Chem. 43 (2005) 6105-6115. https://doi.org/10.1002/pola.21114
  16. M. Pumera, B. Smid, X. Peng, D. Golberg, J. Tang, I. Ichinose, Chem. Eur. J. 13 (2007) 7644-7649. https://doi.org/10.1002/chem.200700211
  17. O. Breuer, U. Sundararaj, Polym. Compos. 25 (2004) 630-645. https://doi.org/10.1002/pc.20058
  18. H. Guo, H. Zhu, H. Lin, J. Zhang, Colloid Polym. Sci. 286 (2008) 587-591. https://doi.org/10.1007/s00396-007-1828-0
  19. G.Z. Chen, M.S.P. Shaffer, D. Coleby, G. Dixon, W. Zhou, D.J. Fray, A.H. Windle, Adv. Mater. 12 (2000) 522-526. https://doi.org/10.1002/(SICI)1521-4095(200004)12:7<522::AID-ADMA522>3.0.CO;2-S
  20. K.K. Kim, S.M. Yoon, J.Y. Choi, J. Lee, B.K. Kim, J.M. Kim, J.H. Lee, U. Paik, M.H. Park, C.W. Yang, K.H. An, Y. Chung, Y.H. Lee, Adv. Funct. Mater. 17 (2007) 1775-1783. https://doi.org/10.1002/adfm.200600915
  21. T. Connolly, R.C. Smith, Y. Hernandez, Y. Gun'ko, J.N. Coleman, J.D. Carey, Small 5 (2009) 826-831. https://doi.org/10.1002/smll.200801094
  22. P.C. Ma, N.A. Siddiqui, G. Marom, J.K. Kim, Compos. Part A 41 (2010) 1345-1367. https://doi.org/10.1016/j.compositesa.2010.07.003
  23. A. Cao, C. Xu, J. Liang, D. Wu, B. Wei, Chem. Phys. Lett. 344 (2001) 13-17. https://doi.org/10.1016/S0009-2614(01)00671-6
  24. R.B. Rakhi, K. Sethupathi, S. Ramaprabhu, App. Surf. Sci. 254 (2008) 6770-6774. https://doi.org/10.1016/j.apsusc.2008.04.094
  25. H. Peng, X. Sun, Chem. Phys. Lett. 471 (2009) 103-105. https://doi.org/10.1016/j.cplett.2009.02.008
  26. L. Li, W. Wang, E.D. Laird, C.Y. Li, M. Defaux, D.E. Ivanov, Polymer 52 (2011) 3633-3638. https://doi.org/10.1016/j.polymer.2011.05.006
  27. M.R. Nyden, S.I. Stoliarov, Polymer 49 (2008) 635-641. https://doi.org/10.1016/j.polymer.2007.11.056
  28. R. Nair, B. Premlal, A. Das, A.K. Sood, Solid State Commun. 149 (2009) 150-152. https://doi.org/10.1016/j.ssc.2008.10.034
  29. E. Ettedgui, H. Razafitrimo, Y. Gao, Appl. Phys. Lett. 67 (1995) 2705-2707. https://doi.org/10.1063/1.114299
  30. I. Lange, J.C. Blakesley, J. Frisch, A. Vollmer, N. Koch, D. Neher, Phys. Rev. Lett. 106 (2011) 216402-216404. https://doi.org/10.1103/PhysRevLett.106.216402
  31. Y.W. Son, S. Han, J. Ihm, New J. Phys. 5 (2003) 152, 2-152.9.
  32. S. Chakrabarti, L. Pan, H. Tanka, S. Hokushin, Y. Nakayama, Jpn. J. App. Phys. 46 (2007) 4364-4369. https://doi.org/10.1143/JJAP.46.4364
  33. W. Yi, T. Jeong, S. Yu, J. Heo, C. Lee, J. Lee, W. Kim, J.B. Yoo, J. Kim, Adv. Mater. 14 (2002) 1464-1468. https://doi.org/10.1002/1521-4095(20021016)14:20<1464::AID-ADMA1464>3.0.CO;2-4
  34. J.P. Kim, Y.R. Noh, J.U. Kim, J.S. Park, Thin Solid Films 519 (2011) 7899-7903. https://doi.org/10.1016/j.tsf.2011.05.046
  35. F. Giubileo, A. Di Bartolomeo, M. Sarno, C. Altavilla, S. Santandrea, P. Ciambelli, A.M. Cucolo, Carbon 50 (2012) 163-169. https://doi.org/10.1016/j.carbon.2011.08.015

Cited by

  1. Synthesis of an Ionic Polyacetylene Derivative via the Non-catalyst Polymerization of 2-Ethynylpyridine Using 4-(Bromomethyl)-7-methoxycoumarin vol.618, pp.1, 2014, https://doi.org/10.1080/15421406.2015.1075838
  2. A Polyacetylene via the Cyclopolymerization of 4,10-Bis(diethylmalonate)-1,6,11-dodecatriyne: Synthesis and Characterization vol.620, pp.1, 2014, https://doi.org/10.1080/15421406.2015.1095431
  3. Synthesis and Characterization of Poly[N-(4-nitrobenzenesulfonyl)-2-ethynylpyridinium chloride] vol.621, pp.1, 2014, https://doi.org/10.1080/15421406.2015.1095855
  4. An ionic polyacetylene from the non-catalyst polymerization of 2-ethynylpyridine using 1,6-dibromohexane: Synthesis and characterization vol.636, pp.1, 2014, https://doi.org/10.1080/15421406.2016.1201382
  5. A conjugated polymer electrolyte for quasi-solid state dye-sensitized solar cell applications vol.636, pp.1, 2014, https://doi.org/10.1080/15421406.2016.1201383
  6. Mechanisms for Imparting Conductivity to Nonconductive Polymeric Biomaterials vol.16, pp.8, 2014, https://doi.org/10.1002/mabi.201600057
  7. Electro-optical and electrochemical properties of poly(1,6-heptadiyne) derivative with a bulky (t-butyldiphenylsiloxy)methyl substituents vol.644, pp.1, 2014, https://doi.org/10.1080/15421406.2016.1277492
  8. Structure and properties of polymer nanocomposite films with carbon nanotubes and graphene vol.38, pp.None, 2014, https://doi.org/10.1002/pc.24079
  9. Surface Structure-Dependent Low Turn-On Electron Field Emission from Polypyrrole/Tin Oxide Hybrid Cathodes vol.2, pp.11, 2014, https://doi.org/10.1021/acsomega.7b01274
  10. Incorporation of Conductive Materials into Hydrogels for Tissue Engineering Applications vol.10, pp.10, 2014, https://doi.org/10.3390/polym10101078
  11. Fabrication, Functionalization, and Application of Carbon Nanotube-Reinforced Polymer Composite: An Overview vol.13, pp.7, 2014, https://doi.org/10.3390/polym13071047