DOI QR코드

DOI QR Code

Simultaneous removal of Pb(II) and Cr(III) by magnetite nanoparticles using various synthesis conditions

  • Wang, Ting (School of Environmental Science and Engineering, Fujian Normal University) ;
  • Jin, Xiaoying (School of Environmental Science and Engineering, Fujian Normal University) ;
  • Chen, Zuliang (School of Environmental Science and Engineering, Fujian Normal University) ;
  • Megharaj, Mallavarapu (Centre for Environmental Risk Assessment and Remediation, University of South Australia) ;
  • Naidu, Ravendra (Centre for Environmental Risk Assessment and Remediation, University of South Australia)
  • Received : 2013.11.02
  • Accepted : 2013.12.17
  • Published : 2014.09.25

Abstract

This study concerns the removal of Pb(II) and Cr(III) using magnetite nanoparticles synthesized by co-precipitation methods with (NCM) or without (CM) nitrogen gas passing through. Removal of Pb(II) significantly decreased from 80.56 to 41.41% when Cr(III) was co-presented, while decrease of Cr(III) was negligible when Pb(II) was present, falling from 42.37 to 38.48%. The characterizations indicated that the removal mechanism occurred through adsorption rather than chemical redox reaction. A co-adsorption mechanism is based on Pb(II) involved surface complexation, while Cr(III) was firstly adsorbed onto magnetite, followed by a partially substitution of Cr(III) for Fe(III) in $Cr-Fe_3O_4$ through ion exchanges.

Keywords

Acknowledgement

Supported by : Fujian Normal University

References

  1. N.N. Nassar, J. Hazard. Mater. 184 (2010) 538-546. https://doi.org/10.1016/j.jhazmat.2010.08.069
  2. L. Yao, Z. Ye, M. Tong, P. Lai, J. Ni, J. Hazard. Mater. 165 (2009) 250-255. https://doi.org/10.1016/j.jhazmat.2008.09.110
  3. K. Shin, J. Hong, J. Jang, J. Hazard. Mater. 190 (2011) 36-44. https://doi.org/10.1016/j.jhazmat.2010.12.102
  4. N. Atar, A. Olgun, S. Wang, Chem. Eng. J. 192 (2012) 1-7. https://doi.org/10.1016/j.cej.2012.03.067
  5. A. Mudhoo, V.K. Garg, S. Wang, Environ. Chem. Lett. 10 (2012) 109-117. https://doi.org/10.1007/s10311-011-0342-2
  6. T. Shi, S. Jia, Y. Chen, Y. Wen, C. Du, H. Guo, Z. Wang, J. Hazard. Mater. 169 (2009) 838-846. https://doi.org/10.1016/j.jhazmat.2009.04.020
  7. J. de, C. Izidoro, D.A. Fungaro, J.E. Abbott, S. Wang, Fuel 103 (2013) 827-834. https://doi.org/10.1016/j.fuel.2012.07.060
  8. M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, Q. Zhang, J. Hazard. Mater. 211-212 (2012) 317-331. https://doi.org/10.1016/j.jhazmat.2011.10.016
  9. W. Yu, T. Zhang, X. Qiao, J. Zhang, L. Yang, Mater. Sci. Eng. B 136 (2007) 101-105. https://doi.org/10.1016/j.mseb.2006.08.030
  10. I.F. Nata, G.W. Salim, C.K. Lee, J. Hazard. Mater. 183 (2010) 853-858. https://doi.org/10.1016/j.jhazmat.2010.07.105
  11. A.R. Mahdavian, M.A.S. Mirrahimi, Chem. Eng. J. 159 (2010) 264-271. https://doi.org/10.1016/j.cej.2010.02.041
  12. P. Yuan, D. Liu, M. Fan, D. Yang, R. Zhu, F. Ge, J. Zhu, H. He, J. Hazard. Mater. 173 (2010) 614-621. https://doi.org/10.1016/j.jhazmat.2009.08.129
  13. Y. Shen, J. Tang, Z. Nie, Y. Wang, Y. Ren, L. Zuo, Sep. Purif. Technol. 68 (2009) 312-319. https://doi.org/10.1016/j.seppur.2009.05.020
  14. X. Wang, L. Zhu, H. Lu, Desalination 276 (2011) 154-160. https://doi.org/10.1016/j.desal.2011.03.040
  15. H. Shen, S. Pan, Y. Zhang, X. Huang, H. Gong, Chem. Eng. J. 183 (2012) 180-191. https://doi.org/10.1016/j.cej.2011.12.055
  16. L. Shi, Y. Lin, X. Zhang, Z. Chen, Chem. Eng. J. 171 (2011) 612-617. https://doi.org/10.1016/j.cej.2011.04.038
  17. X. Zhang, S. Lin, Z. Chen, M. Megharaj, R. Naidu, Water Res. 45 (2011) 3481-3488. https://doi.org/10.1016/j.watres.2011.04.010
  18. K. Petcharoen, A. Sirivat, Mater. Sci. Eng. B 177 (2012) 421-427. https://doi.org/10.1016/j.mseb.2012.01.003
  19. R. Hong, J. Li, H. Li, J. Ding, Y. Zheng, D. Wei, J. Magn. Magn. Mater. 320 (2008) 1605-1614. https://doi.org/10.1016/j.jmmm.2008.01.015
  20. K. Kim, E. Kim, J. Lee, S. Maeng, Y. Kim, Curr. Appl. Phys. 8 (2008) 758-760. https://doi.org/10.1016/j.cap.2007.04.021
  21. X. Wei, R.C. Viadero Jr., Colloids Surf. A, 294 (2007) 280-286. https://doi.org/10.1016/j.colsurfa.2006.07.060
  22. L. Shi, X. Zhang, Z. Chen, Water Res. 45 (2011) 886-892. https://doi.org/10.1016/j.watres.2010.09.025
  23. L. Wei, M. Herve, P. Edouard, J. Cryst. Growth 342 (2012) 21-27. https://doi.org/10.1016/j.jcrysgro.2011.05.031
  24. L. Dong, Z. Zhu, Y. Qiu, J. Zhao, Chem. Eng. J. 165 (2010) 827-834. https://doi.org/10.1016/j.cej.2010.10.027
  25. X. Wang, L. Chen, F. Li, K. Chen, W. Wan, Y. Tang, J. Hazard. Mater. 175 (2010) 816-822. https://doi.org/10.1016/j.jhazmat.2009.10.082
  26. T. Tuutijarvi, J. Lu, M. Sillanpaa, G. Chen, J. Hazard. Mater. 166 (2009) 1415-1420. https://doi.org/10.1016/j.jhazmat.2008.12.069
  27. Z. Sun, F. Su, W. Forsling, P.O. Samskog, J. Colloid Interface Sci. 197 (1998) 151-159. https://doi.org/10.1006/jcis.1997.5239
  28. X. Lv, J. Xu, G. Jiang, J. Tang, X. Xu, J. Colloid Interface Sci. 369 (2012) 460-469. https://doi.org/10.1016/j.jcis.2011.11.049
  29. H.K. Boparai, M. Joseph, D.M. O'Carroll, J. Hazard. Mater. 186 (2011) 458-465. https://doi.org/10.1016/j.jhazmat.2010.11.029
  30. A.S. Ozcan, O. Gok, A. Ozcan, J. Hazard. Mater. 161 (2009) 499-509. https://doi.org/10.1016/j.jhazmat.2008.04.002
  31. M. Jiang, Q. Wang, X. Jin, Z. Chen, J. Hazard. Mater. 170 (2009) 332-339. https://doi.org/10.1016/j.jhazmat.2009.04.092
  32. Q. Li, Q.Y. Yue, Y. Su, B.Y. Gao, H. Sun, Chem. Eng. J. 158 (2010) 489-497. https://doi.org/10.1016/j.cej.2010.01.033
  33. A.S. Ozcan, A. Ozcan, J. Colloid Interface Sci. 276 (2004) 39-46. https://doi.org/10.1016/j.jcis.2004.03.043

Cited by

  1. Efficacy of Iron-Based Nanoparticles and Nanobiocomposites in Removal of Cr3+ vol.20, pp.3, 2016, https://doi.org/10.1061/(asce)hz.2153-5515.0000317
  2. Polyamine Functionalized Magnetite Nanoparticles as Novel Adsorbents for Cu(II) Removal from Aqueous Solutions vol.27, pp.2, 2014, https://doi.org/10.1007/s10904-016-0491-7
  3. Characterization of bare and modified nano-zirconium oxide (ZrO2) and their applications as adsorbents for the removal of bivalent heavy metals vol.34, pp.1, 2014, https://doi.org/10.1007/s11814-016-0259-3
  4. Solidification/stabilization of tannery sludge with iron-based nanoparticles and nano-biocomposites vol.76, pp.4, 2014, https://doi.org/10.1007/s12665-017-6478-z
  5. Fuzzy logic modeling of Pb (II) sorption onto mesoporous NiO/ZnCl2-Rosa Canina-L seeds activated carbon nanocomposite prepared by ultrasound-assisted co-precipitation technique vol.40, pp.1, 2014, https://doi.org/10.1016/j.ultsonch.2017.08.022
  6. Simultaneous Reduction of CH4 and NOx of NGOC/LNT Catalysts for CNG buses vol.19, pp.6, 2014, https://doi.org/10.5762/kais.2018.19.6.167
  7. Remediation of Toxic Metal Contaminated Sediment Using Three Types of nZVI Supported Materials vol.101, pp.6, 2014, https://doi.org/10.1007/s00128-018-2442-1
  8. Synthesis and Characterization of ZnO Nanorods as an Adsorbent for Cr(VI) Sequestration vol.233, pp.7, 2014, https://doi.org/10.1515/zpch-2018-1203
  9. Graphene Composites for Lead Ions Removal from Aqueous Solutions vol.9, pp.14, 2014, https://doi.org/10.3390/app9142925
  10. Lead Remediation Using Smart Materials. A Review vol.233, pp.10, 2014, https://doi.org/10.1515/zpch-2018-1205
  11. Different Insights into Silicate Rectorite Modification and Its Role in Removal of Heavy Metal Ions from Wastewater vol.10, pp.2, 2014, https://doi.org/10.3390/min10020176
  12. The lead removal from aqueous solution by magnetic Fe3O4@polydopamine nanocomposite using Box-Behnken design vol.38, pp.3, 2014, https://doi.org/10.1080/02726351.2018.1539796
  13. Enhanced removal of Cr(III) in high salt organic wastewater by EDTA modified magnetic mesoporous silica vol.303, pp.None, 2020, https://doi.org/10.1016/j.micromeso.2020.110262
  14. Remediation of malachite green in wastewater by ZIF-8@Fe/Ni nanoparticles based on adsorption and reduction vol.594, pp.None, 2021, https://doi.org/10.1016/j.jcis.2021.03.065
  15. Charcoal ash leachate and its sparingly soluble residue for acid mine drainage treatment: Waste for pollution remediation and dual resource recovery vol.320, pp.None, 2014, https://doi.org/10.1016/j.jclepro.2021.128717
  16. A porous biochar supported nanoscale zero-valent iron material highly efficient for the simultaneous remediation of cadmium and lead contaminated soil vol.113, pp.None, 2014, https://doi.org/10.1016/j.jes.2021.06.014