DOI QR코드

DOI QR Code

Effect of the addition of carbon black and carbon nanotube to $FeS_2$ cathode on the electrochemical performance of thermal battery

  • Choi, Yusong (Agency for Defense Development) ;
  • Cho, Sungbaek (Agency for Defense Development) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University)
  • Received : 2013.11.06
  • Accepted : 2013.12.17
  • Published : 2014.09.25

Abstract

Effect of the addition of conductive carbonaceous materials to the $FeS_2$ (pyrite) cathode on electrochemical performance of thermal battery is investigated by adding carbon blacks (CBs) or multi-walled carbon nanotubes (MWCNTs) which has conductive network structures with various amounts from 0.1 to 1 wt.%, compared to the amount of pure $FeS_2$. Among the samples prepared with various amounts of CB or MWCNT addition, the 1 wt.% CB-added sample exhibits the highest electrochemical properties. These results suggest that the improvement in the electrochemical performance of thermal batteries can be achieved by the addition of the conductive carbonaceous materials to pyrite electrode.

Keywords

References

  1. R.A. Guidotti, R. Masset, J. Power Sources 161 (2006) 1443-1449. https://doi.org/10.1016/j.jpowsour.2006.06.013
  2. R.A. Guidotti, P.J. Masset, J. Power Sources 183 (2008) 388-398. https://doi.org/10.1016/j.jpowsour.2008.04.090
  3. P.J. Masset, R.A. Guidotti, J. Power Sources 177 (2008) 595-609. https://doi.org/10.1016/j.jpowsour.2007.11.017
  4. S.S. Wang, R.N. Seefurth, J. Electrochem. Soc. 134 (1987) 530-535. https://doi.org/10.1149/1.2100504
  5. Z. Tomczuk, S.K. Preto, M.F. Roche, J. Electrochem. Soc. 128 (1981) 760-772. https://doi.org/10.1149/1.2127502
  6. R.A. Guidotti, F.W. Reinhardt, J. Dai, J. Roth, D.E. Reisner, J. New Mat. Electrochem. Syst. 5 (2002) 273-279.
  7. D.E. Reisner, T.D. Xiao, J. Dai, R.A. Guidotti, F.W. Reinhardt, J. New Mater. Electrochem. Syst. 2 (1999) 279-283.
  8. X. Huang, X. Li, H. Wang, Z. Pan, M. Qu, Z. Yu, Electrochim. Acta 55 (2010) 7362-7366. https://doi.org/10.1016/j.electacta.2010.07.036
  9. S.R. Sivakkumar, P.C. Howlett, B.W. Jensen, M. Forsyth, D.R. Macfarlane, Electrochim. Acta 54 (2009) 6844-6849. https://doi.org/10.1016/j.electacta.2009.06.091
  10. W. Wei, J. Wang, L. Zhou, J. Yang, B. Schumann, Y. Luli, Electrochem. Commun. 13 (2011) 399-402. https://doi.org/10.1016/j.elecom.2011.02.001
  11. Y. Luli, J. Yang, M. Jiang, Mater. Lett. 62 (2008) 2092-2095. https://doi.org/10.1016/j.matlet.2007.11.022
  12. J.J. Yang, J.H. Choi, H.J. Kim, M. Morita, S.G. Park, J. Ind. Eng. Chem. 19 (2013) 1648-1652. https://doi.org/10.1016/j.jiec.2013.02.003
  13. X.M. Liu, Z.D. Huang, S.W. Oh, B. Zhang, P.C. Ma, M.M.F. Yuen, J.K. Kim, Composites Science and Technology 72 (2012) 121-144. https://doi.org/10.1016/j.compscitech.2011.11.019
  14. L.S. Ying, M.A. bin Mohd Salleh, H.B. Mohamed Yusoff, S.B.A. Rashid, J.B.A. Razak, J. Ind. Eng. Chem. 17 (2013) 367-376. https://doi.org/10.1016/j.jiec.2011.05.007
  15. S. Fujiwara, M. Inaba, A. Tasaka, J. Power Sources 196 (2011) 4012-4018. https://doi.org/10.1016/j.jpowsour.2010.12.009
  16. P. Singh, R.A. Guidotti, D. Reisner, J. Power Sources 138 (2004) 323-326. https://doi.org/10.1016/j.jpowsour.2004.06.038
  17. J.W. Choi, G. Cheruvally, H.J. Ahn, K.W. Kim, J.H. Ahn, J. Power Sources 163 (2006) 158-165. https://doi.org/10.1016/j.jpowsour.2006.04.075
  18. Y.S. Choi, H.R., Yu, H.W., Cheong, S.B., Cho, Y.S. Lee, Accepted in Applied Chem. Engr. Nov. (2013).
  19. G.A. Swift, Proceedinsgs of the 43rd Power Sources Conference 7.1, Sheraton Philadelphia City Center Hotel, Philadelphia, PA 7. 7-7.10, (2008), p. 113.
  20. G.A. Swift, Proceedinsgs of the. 43rd Power Sources Conference P-13, Sheraton Philadelphia City Center Hotel, Philadelphia, PA 7. 7-7.10, (2008), p. 249.
  21. G.A. Swift, Proceedinsgs of the 43rd Power Sources Conference P-14, Sheraton Philadelphia City Center Hotel, Philadelphia, PA 7. 7-7.10, (2008), p. 253.
  22. X.M. Liu, Z.D. Huang, S.W. Oh, B. Zhang, P.C. Ma, M.M.F. Yuen, J.K. Kim, Compos. Sci. Tech. 72 (2012) 121-144. https://doi.org/10.1016/j.compscitech.2011.11.019
  23. J.B. Donnet, Carbon black: Science and Technology, 2nd ed., Taylor & Francis, 1993.
  24. K.S. Chen, in: Proceedings of the 42nd Power Sources Conference 12.4, Wyndham Philadelphia, Philadelphia, PA 6. 12-6.15, (2006), p. 289.
  25. N. Shuster, N. Papadakis, G. Barlow, G. Bayles, in: Proceedings of the 37th Power Sources Conference 12.3, Hilton Cherry Hill, New Jersey 6. 17-6.20, (1996), p. 325.
  26. G.C.S. Freitas, F.C. Peixoto, A.S. Vianna Jr., J. Power Sources 179 (2008) 424-429. https://doi.org/10.1016/j.jpowsour.2007.11.084
  27. S. Schoeffert, J. Power Sources 142 (2005) 361-369. https://doi.org/10.1016/j.jpowsour.2004.09.038
  28. E. Barsoukov, J.H. Kim, C.O. Yoon, H.S. Lee, J. Power Sources 83 (1999) 61-70. https://doi.org/10.1016/S0378-7753(99)00257-8
  29. Z. Galus, Fundamentals of Electrochemical Analysis, Wiley, New York, 1976.

Cited by

  1. MgO-MgF2 system obtained by sol-gel method as an immobilizing agent of the electrolyte applied in the high temperature cells vol.84, pp.2, 2014, https://doi.org/10.1007/s10971-017-4495-8
  2. Variable-temperature preparation and performance of NiCl2 as a cathode material for thermal batteries vol.60, pp.3, 2014, https://doi.org/10.1007/s40843-016-9003-x
  3. Carbon coated CoS2 thermal battery electrode material with enhanced discharge performances and air stability vol.231, pp.None, 2014, https://doi.org/10.1016/j.electacta.2017.02.068
  4. 열전지용 황철석(FeS2) 입자크기 변화에 따른 전기화학반응 메커니즘 vol.30, pp.4, 2014, https://doi.org/10.4313/jkem.2017.30.4.246
  5. 열전지용(MS2, M=Fe, Ni, Co)계 양극의 전기화학적 특성 연구 vol.30, pp.9, 2014, https://doi.org/10.4313/jkem.2017.30.9.583
  6. CoS2 Coatings for Improving Thermal Stability and Electrochemical Performance of FeS2 Cathodes for Thermal Batteries vol.165, pp.9, 2018, https://doi.org/10.1149/2.0321809jes
  7. 열전지용 리튬음극의 전기화학적 특성 vol.29, pp.6, 2014, https://doi.org/10.14478/ace.2018.1048
  8. Iron Trifluoride as a High Voltage Cathode Material for Thermal Batteries vol.166, pp.15, 2014, https://doi.org/10.1149/2.0371915jes
  9. Binder-Free Cathode for Thermal Batteries Fabricated Using FeS 2 Treated Metal Foam vol.7, pp.None, 2014, https://doi.org/10.3389/fchem.2019.00904
  10. Facile synthesis and electrochemical investigations of Tin-doped MnO2/carbon nanotube composites vol.29, pp.1, 2014, https://doi.org/10.1007/s42823-019-00009-z
  11. Recent Progress in Cathode Materials for Thermal Batteries vol.56, pp.3, 2019, https://doi.org/10.4191/kcers.2019.56.3.05
  12. Investigation the electrochemical properties of LiCl-LiBr-LiF-doped Li7La3Zr2O12 electrolyte for lithium thermal batteries vol.26, pp.8, 2014, https://doi.org/10.1007/s11581-020-03558-w
  13. Nanomaterials in Dentistry: State of the Art and Future Challenges vol.10, pp.9, 2020, https://doi.org/10.3390/nano10091770
  14. Hydrothermally synthesized bimetallic disulfide CoxNi1-xS2 as high-performance cathode material for lithium thermal battery vol.26, pp.10, 2014, https://doi.org/10.1007/s11581-020-03606-5
  15. Cobalt-Doped NiS2 Micro/Nanostructures with Complete Solid Solubility as High-Performance Cathode Materials for Actual High-Specific-Energy Thermal Batteries vol.12, pp.45, 2014, https://doi.org/10.1021/acsami.0c13396
  16. Investigation of Li Anode/FeS 2 Cathode Electrochemical Properties for Optimizing High‐Power Thermal Batteries vol.4, pp.2, 2014, https://doi.org/10.1002/batt.202000211
  17. Development of the Ca/FeS2 Chemistry for Thermal Batteries vol.33, pp.18, 2014, https://doi.org/10.1021/acs.chemmater.1c01864