DOI QR코드

DOI QR Code

$CuInS_2$ nanostructures: Synthesis, characterization, formation mechanism and solar cell applications

  • Hosseinpour-Mashkani, S.M. (Center for Nanoscience and Technology, IST, Jawaharlal Nehru Technological University Hyderabad) ;
  • Salavati-Niasari, M. (Institute of Nano Science and Nano Technology, University of Kashan) ;
  • Mohandes, F. (Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan)
  • Received : 2013.12.06
  • Accepted : 2013.12.29
  • Published : 2014.09.25

Abstract

This investigation reports the synthesis of $CuInS_2$ nanostructures by using [$Cu(gly)_2$] via a microwave- assisted method. $CuInS_2$ nanostructures were obtained from a mixture of $InCl_3$, [$Cu(gly)_2$] and different sulfur sources in propylene glycol. In this work, the effect of different sulfur sources on the morphology of $CuInS_2$ nanostructures was studied. $CuInS_2$ nanostructures were characterized by XRD, SEM, TEM, EDS, and FT-IR. To fabricate a standard solar cell, CdS film was directly deposited on top of the CIS film prepared by Doctor's blade method through chemical bath deposition. The as-deposited CdS/$CuInS_2$ film was used for the photovoltaic measurements.

Keywords

References

  1. M.A. Green, K. Emery, D.L. King, S. Igari, W. Warta, Prog. Photovolt. Res. Appl. 10 (2002) 355-360. https://doi.org/10.1002/pip.453
  2. H.J. Lewerenz, H. Goslowsky, K.D. Husemann, S. Fiechter, Nature 321 (1986) 687-689. https://doi.org/10.1038/321687a0
  3. B. Tell, J. Shay, H. Kasper, Phys. Rev. B 4 (1971) 2463-2467. https://doi.org/10.1103/PhysRevB.4.2463
  4. C.J. Carmalt, D.E. Morrison, I.P. Parkin, J. Mater. Chem. 8 (1998) 2209-2211. https://doi.org/10.1039/a804430i
  5. D.C. Pan, L.J. An, Z.M. Sun, W. Hou, Y. Yang, Z.Z. Yang, Y.F. Lu, J. Am. Chem. Soc. 130 (2008) 5620-5621. https://doi.org/10.1021/ja711027j
  6. Y. Jiang, Y. Wu, X. Mo, W.C. Yu, Y. Xie, Y.T. Qian, Inorg. Chem. 39 (2000) 2964-2965. https://doi.org/10.1021/ic000126x
  7. X.L. Gou, F.Y. Cheng, Y.H. Shi, L. Zhang, S.J. Peng, J. Chen, P.W. Shen, J. Am. Chem. Soc. 128 (2006) 7222-7229. https://doi.org/10.1021/ja0580845
  8. S.J. Peng, J. Liang, L. Zhang, Y.H. Shi, J. Chen, J. Cryst. Growth 305 (2007) 99-106. https://doi.org/10.1016/j.jcrysgro.2007.02.040
  9. J.P. Xiao, Y. Xie, R. Tang, Y.T. Qian, Solid State J. Chem. 161 (2001) 179-183. https://doi.org/10.1006/jssc.2001.9247
  10. S.L. Castro, S.G. Bailey, K.K. Banger, A.F. Hepp, Chem. Mater. 15 (2003) 3142-3147. https://doi.org/10.1021/cm034161o
  11. S.K. Batabyal, L. Tian, N. Venkatram, W. Ji, J.J. Vittal, J. Phys. Chem. C 113 (2009) 15037-15042. https://doi.org/10.1021/jp905234y
  12. F.M. Courtel, R.W. Paynter, B. Marsan, M. Morin, Chem. Mater. 21 (2009) 3752-3762. https://doi.org/10.1021/cm900601k
  13. C. Czekelius, M. Hilgendorff, L. Spanhel, I. Bedja, M. Lerch, G. Meuller, U. Bloeck, DS. Su, M. Giersig, Adv. Mater. 11 (1999) 643-646. https://doi.org/10.1002/(SICI)1521-4095(199906)11:8<643::AID-ADMA643>3.0.CO;2-I
  14. H. Zhong, Y. Zhou, M. Ye, Y. He, J. Ye, C. He, C. Yang, Y. Li, Chem. Mater. 20 (2008) 643-653.
  15. M. Susaki, Jpn. J. Appl. Phys. 44 (2005) 866-870. https://doi.org/10.1143/JJAP.44.L866
  16. A. Pein, M. Baghbanzadeh, T. Rath, W. Haas, E. Maier, H. Amenitsch, F. Hofer, C.O. Kappe, G. Trimmel, Inorg. Chem. 50 (2011) 193-200. https://doi.org/10.1021/ic101651p
  17. C.O. Kappe, A. Stadler, Microwave in Organic and Medicinal Chemistry, Wiley- VCH, Weinheim, 2005.
  18. J.R. Lill, Microwave Assisted Proteomics, RSC Publishing, Cambridge, 2009.
  19. A. Sobhani, M. Salavati-Niasari, M. Sobhani, Mater. Sci. Semicond. Process. 16 (2013) 410-417. https://doi.org/10.1016/j.mssp.2012.09.002
  20. F. Soofivand, F. Mohandes, M. Salavati-Niasari, Micro Nano Lett. 7 (2012) 283-295. https://doi.org/10.1049/mnl.2012.0042
  21. M. Salavati-Niasari, F. Mohandes, F. Davar, K. Saberyan, Appl. Surf. Sci. 256 (2009) 1476-1480. https://doi.org/10.1016/j.apsusc.2009.09.006
  22. F. Mohandes, F. Davar, M. Salavati-Niasari, J. Magn. Magn. Mater. 322 (2010) 872-877. https://doi.org/10.1016/j.jmmm.2009.11.019
  23. F. Mohandes, F. Davar, M. Salavati-Niasari, K. Saberyan, Curr. Nanosci. 7 (2011) 260-269. https://doi.org/10.2174/157341311794653550
  24. F. Mohandes, F. Davar, M. Salavati-Niasari, J. Phys. Chem. Solids 71 (2010) 1623-1628. https://doi.org/10.1016/j.jpcs.2010.08.014
  25. A. Sobhani, M. Salavati-Niasari, Mater. Res. Bull. 48 (2013) 3204-3210. https://doi.org/10.1016/j.materresbull.2013.04.086
  26. F. Soofivand, M. Salavati-Niasari, F. Mohandes, Mater. Lett. 98 (2013) 55-58. https://doi.org/10.1016/j.matlet.2013.01.129
  27. S.M. Hosseinpour-Mashkani, F. Mohandes, M. Salavati-Niasari, K. Venkateswara-Rao, Mater. Res. Bull. 47 (2012) 3148-3159. https://doi.org/10.1016/j.materresbull.2012.08.017
  28. I. Konovalov, Thin Solid Films 413 (2004) 451-452.
  29. A. Romeo, M. Terheggen, D. Abou-Ras, D.L. Batzner, F.-J. Haug, M. Kalin, D. Rudmann, A.N. Tiwari, Prog. Photovolt. Res. Appl. 12 (2004) 93-111. https://doi.org/10.1002/pip.527
  30. S. Peng, F. Cheng, J. Liang, Z. Tao, J. Chen, J. Alloys Compd. 481 (2009) 786-789. https://doi.org/10.1016/j.jallcom.2009.03.084
  31. J. Feng, J. Han, X. Zhao, Prog. Org. Coat. 64 (2009) 268-273. https://doi.org/10.1016/j.porgcoat.2008.08.022
  32. X. Hou, K.-L. Choy, Thin Solid Films 480 (2005) 13-17.
  33. A.K. Sharma, P. Rajaram, Mater. Sci. Eng. B 172 (2010) 37-43. https://doi.org/10.1016/j.mseb.2010.04.012
  34. Y. Xinyu, Z. Jiasong, L. Lijun, L. Xiaojuan, L. Haitao, X. Weidong, Mater. Chem. Phys. 118 (2009) 254-257. https://doi.org/10.1016/j.matchemphys.2009.07.042
  35. J. Zhong, J. Hu, W. Cai, F. Yang, L. Liu, H. Liu, X. Yang, X. Liang, W. Xiang, J. Alloys Compd. 501 (2010) 432-435.
  36. C. Wen, X. Weidong, W. Juanjuan, W. Xiaoming, Z. Jiasong, L. Lijun, Mater. Lett. 63 (2009) 2495-2498. https://doi.org/10.1016/j.matlet.2009.08.050
  37. M. Ohsaku, N.L. Allinger, J. Phys. Chem. 92 (1988) 4591-4594. https://doi.org/10.1021/j100327a008
  38. Z.F. Ma, H.L. Han, Colloids Surf. A 317 (2008) 229-233. https://doi.org/10.1016/j.colsurfa.2007.10.018
  39. S. Goraia, S. Bhattacharyab, E. Liarokapisc, D. Lampakisc, S. Chaudhuri, Mater. Lett. 59 (2005) 3535-3538. https://doi.org/10.1016/j.matlet.2005.06.023
  40. H. Wang, J.J. Zhu, J.M. Zhu, H.Y. Chen, J. Phys. Chem. B 106 (2002) 3848-3854. https://doi.org/10.1021/jp0135003
  41. H. Peng, L. n Zhang, C. Soeller, J. Travas-Sejdic, J. Lumin. 127 (2007) 721-726. https://doi.org/10.1016/j.jlumin.2007.04.007
  42. P. Wu, Z. Fang, X. Zhong, Y.-J. Yang, Colloids Surf. A 375 (2011) 109-116. https://doi.org/10.1016/j.colsurfa.2010.11.070
  43. M. Molaei, E. Saievar Iranizad, M. Marandi, N. Taghavinia, R. Amrollahi, Appl. Surf. Sci. 257 (2011) 9796-9801. https://doi.org/10.1016/j.apsusc.2011.06.020
  44. F. Goto, M. Ichimura, E. Aria, Jpn. J. Appl. Phys. 36 (1997) 1146-1148. https://doi.org/10.1143/JJAP.36.1146
  45. H. Zhang, D. Yang, S. Li, Y. Ji, X. Ma, D. Que, Nanotechnology 15 (2004) 1122-1125. https://doi.org/10.1088/0957-4484/15/9/003
  46. T. Thongtem, J. Jaroenchaichana, S. Thongtem, Mater. Lett. 63 (2009) 2163-2174. https://doi.org/10.1016/j.matlet.2009.07.009
  47. O. Amiri, M. Salavati-Niasari, M. Sabet, D. Ghanbarir, Mater. Sci. Semicond. Process. 16 (2013) 1485-1494. https://doi.org/10.1016/j.mssp.2013.04.026
  48. F. Tavakoli, M. Salavati-Niasari, D. Ghanbari, K. Saberyan, S.M. Hosseinpour-Mashkani, Mater. Res. Bull. 49 (2014) 14-20. https://doi.org/10.1016/j.materresbull.2013.08.037
  49. Y. Makari, S. Ito, T. Kitamura, Y. Wada, S. Yanagida, 14th International Conference on Photochemical Conversion and Storage of Solar Energy (IPS-14), 2002 (abstract No. W1-P-59).
  50. K. Das, S.K. Panda, S. Gorai, P. Mishra, S. Chaudhuri, Mater. Res. Bull. 43 (2008) 2742-2750. https://doi.org/10.1016/j.materresbull.2007.10.013
  51. D.P. Dutta, G. Sharma, Mater. Lett. 60 (2006) 2395-2398. https://doi.org/10.1016/j.matlet.2006.01.025
  52. C. Yu, J.C. Yu, H. Wen, C. Zhang, Mater. Lett. 63 (2009) 1984-1986. https://doi.org/10.1016/j.matlet.2009.06.030

Cited by

  1. NiAl2O4 nanoparticles: synthesis and characterization through modify sol-gel method and its photocatalyst application vol.26, pp.10, 2014, https://doi.org/10.1007/s10854-015-3419-z
  2. Effects of Preparation Conditions on the CuInS2Films Prepared by One-Step Electrodeposition Method vol.2015, pp.None, 2014, https://doi.org/10.1155/2015/678929
  3. Synthesis and characterization of Fe2TiO5 nanoparticles through a sol-gel method and its photocatalyst applications vol.26, pp.6, 2014, https://doi.org/10.1007/s10854-015-2930-6
  4. In2S3 nanostructures: semi-batch synthesis and characterization and its photovoltaic applications vol.26, pp.6, 2014, https://doi.org/10.1007/s10854-015-2977-4
  5. Controlled Synthesis of CoTiO3 Nanostructures Via Two-Step Sol-Gel Method in the Presence of 1,3,5-Benzenetricarboxylic Acid vol.26, pp.4, 2014, https://doi.org/10.1007/s10876-014-0814-1
  6. Controlled synthesis of Tl2O3 nanostructures via microwave route by a novel pH adjuster and investigation of its photocatalytic activity vol.26, pp.7, 2014, https://doi.org/10.1007/s10854-015-3072-6
  7. Novel sol-gel method for synthesis of PbTiO3 and its light harvesting applications vol.26, pp.12, 2014, https://doi.org/10.1007/s10854-015-3618-7
  8. BaTiO3/Ba4Ti13O30 nanocomposite: synthesis, characterization, and its photovoltaic application via two-step sol-gel method vol.26, pp.12, 2014, https://doi.org/10.1007/s10854-015-3679-7
  9. Solar light harvesting with multinary metal chalcogenide nanocrystals vol.47, pp.14, 2018, https://doi.org/10.1039/c8cs00029h
  10. Synthesis of binary Cu-Se and In-Se nanoparticle inks using cherry blossom gum for CuInSe2 thin film solar cell applications vol.35, pp.12, 2018, https://doi.org/10.1007/s11814-018-0155-0
  11. Physico-chemical studies of Cd1−xZnxS thin films produced by simple two-electrode electrodeposition system for solar cell application vol.30, pp.6, 2014, https://doi.org/10.1007/s10854-019-00922-z
  12. Microwave assisted synthesis of polythiophene-molybdenum sulfide counter electrode in dye sensitized solar cell vol.30, pp.14, 2014, https://doi.org/10.1007/s10854-019-01740-z
  13. A one pot hydrothermal stimulated CdS-reduced graphene oxide (CdS/rGO) hybrid nanocomposite for high performance photovoltaic applications vol.30, pp.16, 2014, https://doi.org/10.1007/s10854-019-01920-x
  14. CuInS2/Mg(OH)2 Nanosheets for the Enhanced Visible-Light Photocatalytic Degradation of Tetracycline vol.9, pp.11, 2014, https://doi.org/10.3390/nano9111567
  15. Photo-electrochemical Reduction of Carbon Dioxide into Methanol at CuFeO2 Nanoparticle-Decorated CuInS2 Thin-Film Photocathodes vol.34, pp.8, 2020, https://doi.org/10.1021/acs.energyfuels.0c02009
  16. Biomimetic synthesis of CuInS2 nanoparticles: Characterization, cytotoxicity, and application in quantum dots sensitized solar cells vol.14, pp.7, 2021, https://doi.org/10.1016/j.arabjc.2021.103176