DOI QR코드

DOI QR Code

A Phenology Modelling Using MODIS Time Series Data in South Korea

MODIS 시계열 자료(2001~2011) 및 Timesat 알고리즘에 기초한 남한 지역 식물계절 분석

  • Kim, Nam-Shin (Plant Conservation Division, Korea National Arboretum) ;
  • Cho, Yong-Chan (Plant Conservation Division, Korea National Arboretum) ;
  • Oh, Seung-Hwan (Plant Conservation Division, Korea National Arboretum) ;
  • Kwon, Hye-Jin (Plant Conservation Division, Korea National Arboretum) ;
  • Kim, Gyung-Soon (Ecological Assessment Team, National Institute of Ecology)
  • 김남신 (국립수목원 산림자원보존과) ;
  • 조용찬 (국립수목원 산림자원보존과) ;
  • 오승환 (국립수목원 산림자원보존과) ;
  • 권혜진 (국립수목원 산림자원보존과) ;
  • 김경순 (국립생태원 생태평가팀)
  • Received : 2014.08.14
  • Accepted : 2014.09.16
  • Published : 2014.09.30

Abstract

This study aimed to analyze spatio-temporal trends of phenological characteristics in South Korea by using MODIS EVI. For the phenology analysis, we had applied double logistic function to MODIS time-series data. Our results showed that starting date of phenology seems to have a tendency along with latitudinal trends. Starting date of phenology of Jeju Island and Mt. Sobeak went back for 0.38, 0.174 days per year, respectively whereas, Mt. Jiri and Mt. Seolak went forward for 0.32 days, 0.239 days and 0.119 days, respectively. Our results exhibited the fluctuation of plant phonological season rather than the change of phonological timing and season. Starting date of plant phenology by spatial distribution revealed tendency that starting date of mountain area was late, and basin and south foot of mountain was fast. In urban ares such as Seoul metropolitan, Masan, Changwon, Milyang, Daegu and Jeju, the phonological starting date went forward quickly. Pheonoligcal attributes such as starting date and leaf fall in urban areas likely being affected from heat island effect and related warming. Our study expressed that local and regional monitoring on phonological events and changes in Korea would be possible through MODIS data.

본 연구는 MODIS 위성영상을 이용하여 광역적으로 진행되고 있는 식물계절학적 특징을 분석하고자 수행하였다. 위성영상을 이용한 식물계절학적 특징 분석은 현장 관찰 자료의 분석을 위한 전반적인 식물계절 경향성 및 변동성에 필요한 정보를 제공해 줄 수 있으며, 현장 관찰 값과 광역 식물계절 관측 값의 연결을 통하여 광역 수준에서 보다 정밀도 높은 식물 계절현상 모니터링을 가능하게 한다. 본 연구의 기반이 된 MODIS EVI 자료는 Timesat Algorithms의 double logistic function으로 평활화시켜 분석하였다. 제주${\rightarrow}$남해안${\rightarrow}$지리산${\rightarrow}$소백산${\rightarrow}$설악산의 위도 분포에 따라 식물계절 시작일은 늦어지는 경향을 보였다. 그러나 11년간 주요 산림 지역에서의 식물 계절 시작은 해마다 시작일에 다르게 나타나는 연변동의 특징을 보였다. 변동 자료를 고차다항식으로 변형한 결과, 제주도는 연간 0.38일, 소백산지역은 0.174일 계절 시작이 늦어지고, 남해안은 0.32일, 지리산은 0.239일, 설악산 지역은 0.119일 개엽일이 빨라지고 있는 것으로 나타났다. 우리나라 전체 식물계절 시작 시기의 특징을 공간적으로 살펴보면, 주요 산림 지역은 늦어지고, 분지나 산록의 남사면지역에는 빨라지는 것으로 나타났다. 지역적으로 살펴보면, 제주도의 남서해안 및 북동해안 사면지역, 동남해안 지역이 빠른 경향을 보였다. 행정구역별 식물계절 시작 시기를 분석한 결과, 2001년에는 서울과 경기도, 동해안, 남해안, 마산, 창원, 밀양, 대구, 제주도를 중심으로 빠르게 시작되었다. 이는 서울, 경기도, 마산, 창원, 밀양, 대구 등의 도시지역은 도시화에 따른 기온상승의 영향인 것으로 해석된다. 이 같은 경향은 2005, 2010년에도 같은 경향으로 보이고 있어 도시화가 식물계절 변화에 중요한 영향을 미치고 있는 것으로 해석할 수 있다. 본 연구의 시간적 규모인 10년 이내에서는 기후변동에 따른 식물계절 현상의 변이성을 잘 나타내었으며, 이러한 식물계절 모니터링 기법은 30년 이상의 보다 장기적인 자료를 축적을 통하여 기후변화 양상에 따른 생물 계절 현상 변화와 해석에 중요한 역할을 할 것으로 생각된다.

Keywords

References

  1. Beebee, T.J.C. 1995. Amphibian breeding and climate. Nature 374: 219-220. https://doi.org/10.1038/374219a0
  2. Brown, J.L., S.H. Li and N. Bahagabati. 1999. Long-term trend toward earlier breeding in an American bird: a response to global warming? Proceedings of the National Academy of Science of the United States of America 96: 5565-5569. https://doi.org/10.1073/pnas.96.10.5565
  3. Cayan, D.R. 2001. Changes in the onset of spring in the western United States. Bulletin of the American Meteorological Society 82: 399. https://doi.org/10.1175/1520-0477(2001)082<0399:CITOOS>2.3.CO;2
  4. Costanza, Z., J.A. Andresen and J.A. Flore. 2006. Phenological models of flower bud stages and fruit growth of 'Montmorency' sour cherry based on growing degree-day accumulation. Journal of the American Society for Horticultural Science 131(5): 601-607.
  5. Crick, H.Q.P. and T.H. Sparks. 1999. Climate related to egg-laying trends. Nature 399: 423-424. https://doi.org/10.1038/20839
  6. Fisher, J.I., A.D. Richardson and J.F. Mustard. 2007. Phenology model from surface meteorology does not capture satellite-based greenup estimations. Global Change Biology 13: 707-721. https://doi.org/10.1111/j.1365-2486.2006.01311.x
  7. Gibbs, J.P. and A.R. Breisch. 2001. Climate warming and calling phenology of frogs near Ithaca, New York, 1900-1999. Conservation Biology 15: 1175-1178. https://doi.org/10.1046/j.1523-1739.2001.0150041175.x
  8. Hird, J. and G.J. McDermid. 2009. Noise reduction of NDVI time series: An empirical comparison of selected techniques. Remote Sensing of Environment 113(1): 248-258. https://doi.org/10.1016/j.rse.2008.09.003
  9. Jonsson, A.M., L. Eklundh, M. Hellstrom, L. Barring and P. Jonsson. 2010. Annual changes in MODIS vegetation indices of Swedish coniferous forests in relation to snow dynamics and tree phenology. Remote Sensing of Environment 114: 2719-2730. https://doi.org/10.1016/j.rse.2010.06.005
  10. Jonsson, P. and L. Eklundh. 2002. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Transactions on Geoscience and Remote Sensing 40: 1824-1832. https://doi.org/10.1109/TGRS.2002.802519
  11. Jonsson, P. and L. Eklundh. 2003. Seasonality extraction from time-series of satellite sensor data. In Frontiers of Remote Sensing Information Processing, C.H. Chen (Ed.): 487-500.
  12. Jonsson, P. and L. Eklundh. 2004. TIMESAT - a program for analysing time-series of satellite sensor data. Computers and Geosciences 30: 833-845. https://doi.org/10.1016/j.cageo.2004.05.006
  13. Kim, N.S., H.C. Lee and J.Y. Cha. 2013. A study on changes of phenology and characteristics of spatial distribution using MODIS images. The Korea society of Environmental Restoration Technology 16(5): 59-69. https://doi.org/10.13087/kosert.2013.16.5.059
  14. Lee, K., H.J. Baek, C.H. Cho and W.T. Kwon. 2011. The recent (2001-2011) changes on temperature and precipitation related to normals (1971-2000) in Korea. The Geographical Journal of Korea 45: 237-248.
  15. Lee, S.K. 2011. An Analysis on the effects and Vulnerability of Vegetation Distribution caused by Temperature increase, a Master's degree, Kyunghee University.
  16. Li, M., Z. Wu, L. Qin and X. Meng. 2011. Extracting vegetation phenology metrics in Changbai Mountains using an improved logistic model. Chinese Geographical Science 21(3): 304-311. https://doi.org/10.1007/s11769-011-0471-3
  17. Parmesan, C. and G. Yohe. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37-42. https://doi.org/10.1038/nature01286
  18. Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics 37: 637-669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100
  19. Root, T.L., J.T. Price, K.R. Hall, S.H. Schneider, C. Rosenzweig and J.A. Pounds. 2003. Fingerprints of global warming on wild animals and plants. Nature 421: 57-60. https://doi.org/10.1038/nature01333
  20. Sherry, R.A., X. Zhou, S. Gu, J.A. Arnone, D.S. Schimel, P.S. Verburg, L.L. Wallace and Y. Luo. 2007. Divergence of reproductive phenology under climate warming. Proceedings of the National Academy of Sciences 104(1): 198-202. https://doi.org/10.1073/pnas.0605642104
  21. Sparks, T.H. and P.D. Carey. 1995. The responses of species to climate over two centuries: An analysis of the Marsham phenological record, 1736-1947. Journal of Ecology 83: 321-329. https://doi.org/10.2307/2261570
  22. Stenseth, N.C. and A. Mysterud. 2002. Climate, changing phenology, and other life history traits: Nonlinearity and match-mismatch to the environment. Proceedings of the National Academy of Sciences of the United States of America 99: 13379-13381. https://doi.org/10.1073/pnas.212519399
  23. Tan, B., J. Morisette, R. Wolfe, F. Gao, G. Ederer, J. Nightingale and J. Pedelty. 2011. An Enhanced TIMESAT Algorithm for Estimating Vegetation Phenology Metrics From MODIS Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 4(2): 361-371. https://doi.org/10.1109/JSTARS.2010.2075916
  24. Walther, G.R., E. Post, P. Convey, A. Menzel, C. Parmesan, T.J.C. Beebee, J.M. Fromentin, O. Hoegh-Guldberg and F. Bairlein. 2002. Ecological responses to recent climate change. Nature 416: 389-395. https://doi.org/10.1038/416389a
  25. Wang, E.L. and T. Engel. 1998. Simulation of phenological development of wheat crops. Agricultural Systems 58(1): 1-24. https://doi.org/10.1016/S0308-521X(98)00028-6
  26. Zhang, X., M.A. Friedl and C.B. Schaaf. 2006. Global vegetation phenology from Moderate Resolution Imaging Spectroradiometer (MODIS): Evaluation of global patterns and comparison with in situ measurements. Journal of Geophyscial Research 111: 1-14.
  27. Zhang, X., M.A. Friedl, C.B. Schaaf and A.H. Strahler. 2004. Climate controls on vegetation phenological patterns in northern mid- and high latitudes inferred from MODIS data. Global Change Biology 10: 1133-1145. https://doi.org/10.1111/j.1529-8817.2003.00784.x
  28. Zhang, X., M.A. Friedl, C.B. Schaaf, A.H. Strahler, J.C.F. Hodges, F. Gao, B.C. Reed and A. Huete. 2003. Monitoring vegetation phenology using MODIS. Remote Sensing of Environment 84: 471-475. https://doi.org/10.1016/S0034-4257(02)00135-9