DOI QR코드

DOI QR Code

PKCβ Positively Regulates RANKL-Induced Osteoclastogenesis by Inactivating GSK-3β

  • Shin, Jihye (Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University) ;
  • Jang, Hyunduk (Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University) ;
  • Lin, Jingjing (Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University) ;
  • Lee, Soo Young (Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University)
  • Received : 2014.07.31
  • Accepted : 2014.08.18
  • Published : 2014.10.31

Abstract

Protein kinase C (PKC) family members phosphorylate a wide variety of protein targets and are known to be involved in diverse cellular signaling pathways. However, the role of PKC in receptor activator of NF-${\kappa}B$ ligand (RANKL) signaling has remained elusive. We now demonstrate that $PKC{\beta}$ acts as a positive regulator which inactivates glycogen synthase kinase-$3{\beta}$ (GSK-$3{\beta}$) and promotes NFATc1 induction during RANKL-induced osteoclastogenesis. Among PKCs, $PKC{\beta}$ expression is increased by RANKL. Pharmacological inhibition of $PKC{\beta}$ decreased the formation of osteoclasts which was caused by the inhibition of NFATc1 induction. Importantly, the phosphorylation of GSK-$3{\beta}$ was decreased by $PKC{\beta}$ inhibition. Likewise, down-regulation of $PKC{\beta}$ by RNA interference suppressed osteoclast differentiation, NFATc1 induction, and GSK-$3{\beta}$ phosphorylation. The administration of PKC inhibitor to the RANKL-injected mouse calvaria efficiently protected RANKL-induced bone destruction. Thus, the $PKC{\beta}$ pathway, leading to GSK-$3{\beta}$ inactivation and NFATc1 induction, has a key role in the differentiation of osteoclasts. Our results also provide a further rationale for $PKC{\beta}$'s therapeutic targeting to treat inflammation-related bone diseases.

Keywords

References

  1. Anderson, D.M., Maraskovsky, E., Billingsley, W.L., Dougall, W.C., Tometsko, M.E., Roux, E.R., Teepe, M.C., DuBose, R.F., Cosman, D., and Galibert, L. (1997). A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390, 175-179. https://doi.org/10.1038/36593
  2. Boyle, W.J., Simonet, W.S., and Lacey, D.L. (2003). Osteoclast differentiation and activation. Nature 423, 337-342. https://doi.org/10.1038/nature01658
  3. Choi, H.K., Kang, H.R., Jung, E., Kim, T.E., Lin, J.J., and Lee, S.Y. (2013). Early estrogen-induced gene 1, a novel RANK signaling component, is essential for osteoclastogenesis. Cell Res. 23, 524-536. https://doi.org/10.1038/cr.2013.33
  4. Crabtree, G.R., and Olson, E.N. (2002). NFAT signaling: choreographing the social lives of cells. Cell 109, S67-79. https://doi.org/10.1016/S0092-8674(02)00699-2
  5. Doble, B.W., and Woodgett, J.R. (2003). GSK-3: tricks of the trade for a multi-tasking kinase. J. Cell Sci. 116, 1175-1186. https://doi.org/10.1242/jcs.00384
  6. Fang, X., Yu, S., Tanyi, J.L., Lu, Y., Woodgett, J.R., and Mills, G.B. (2002). Convergence of multiple signaling cascades at glycogen synthase kinase 3: Edg receptor-mediated phosphorylation and inactivation by lysophosphatidic acid through a protein kinase Cdependent intracellular pathway. Mol. Cell. Biol. 22, 2099-2110. https://doi.org/10.1128/MCB.22.7.2099-2110.2002
  7. Geraldes, P., and King, G.L. (2010). Activation of protein kinase C isoforms and its impact on diabetic complications. Circ. Res.106, 1319-1331. https://doi.org/10.1161/CIRCRESAHA.110.217117
  8. Goode, N., Hughes, K., Woodgett, J.R., and Parker, P.J. (1992). Differential regulation of glycogen synthase kinase-3 beta by protein kinase C isotypes. J. Biol. Chem. 267, 16878-16882.
  9. Hogan, P.G., Chen, L., Nardone, J., and Rao, A. (2003). Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 17, 2205-2232. https://doi.org/10.1101/gad.1102703
  10. Jang, H.D., Shin, J.H., Park, D.R., Hong, J.H., Yoon, K., Ko, R., Ko, C.Y., Kim, H.S., Jeong, D., Kim, N., et al. (2011). Inactivation of glycogen synthase kinase-3beta is required for osteoclast differentiation. J. Biol. Chem. 286, 39043-39050. https://doi.org/10.1074/jbc.M111.256768
  11. Jang, H.D., Noh, J.Y., Shin, J.H., Lin, J.J., and Lee, S.Y. (2013). PTEN regulation by the Akt/GSK-3beta axis during RANKL signaling. Bone 55, 126-131. https://doi.org/10.1016/j.bone.2013.02.005
  12. Kawakami, T., Kawakami, Y., and Kitaura, J. (2002). Protein kinase C beta (PKC beta).: normal functions and diseases. J. Biochem. 132, 677-682. https://doi.org/10.1093/oxfordjournals.jbchem.a003273
  13. Kim, H., Choi, H.K., Shin, J.H., Kim, K.H., Huh, J.Y., Lee, S.A., Ko, C.Y., Kim, H.S., Shin, H.I., Lee, H.J., et al. (2009). Selective inhibition of RANK blocks osteoclast maturation and function and prevents bone loss in mice. J. Clin. Invest. 119, 813-825. https://doi.org/10.1172/JCI36809
  14. Kim, J.H., Kim, K., Youn, B.U., Jin, H.M., and Kim, N. (2010). MHC class II transactivator negatively regulates RANKL-mediated osteoclast differentiation by downregulating NFATc1 and OSCAR. Cell. Signal. 22, 1341-1349. https://doi.org/10.1016/j.cellsig.2010.05.001
  15. Kobayashi, N., Kadono, Y., Naito, A., Matsumoto, K., Yamamoto, T., Tanaka, S., and Inoue, J. (2001). Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. EMBO J. 20, 1271-1280. https://doi.org/10.1093/emboj/20.6.1271
  16. Lacey, D.L., Timms, E., Tan, H.L., Kelley, M.J., Dunstan, C.R., Burgess, T., Elliott, R., Colombero, A., Elliott, G., Scully, S., et al. (1998). Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165-176. https://doi.org/10.1016/S0092-8674(00)81569-X
  17. Lee, J., and Kim, M.S. (2007). The role of GSK3 in glucose homeostasis and the development of insulin resistance. Diabetes Res. Clin. Pract. 77 Suppl 1, S49-57. https://doi.org/10.1016/j.diabres.2007.01.033
  18. Lee, S.W., Kwak, H.B., Chung, W.J., Cheong, H., Kim, H.H., and Lee, Z.H. (2003). Participation of protein kinase C beta in osteoclast differentiation and function. Bone 32, 217-227. https://doi.org/10.1016/S8756-3282(02)00976-6
  19. Moon, J.B., Kim, J.H., Kim, K., Youn, B.U., Ko, A., Lee, S.Y., and Kim, N. (2012). Akt induces osteoclast differentiation through regulating the GSK3beta/NFATc1 signaling cascade. J. Immunol. 188, 163-169. https://doi.org/10.4049/jimmunol.1101254
  20. Roffey, J., Rosse, C., Linch, M., Hibbert, A., McDonald, N.Q., and Parker, P.J. (2009). Protein kinase C intervention: the state of play. Curr. Opin. Cell Biol. 21, 268-279. https://doi.org/10.1016/j.ceb.2009.01.019
  21. Saito, N., Kikkawa, U., and Nishizuka, Y. (2002). The family of protein kinase C and membrane lipid mediators. J. Diabetes Complications 16, 4-8. https://doi.org/10.1016/S1056-8727(01)00200-8
  22. Schiaffino, S., and Mammucari, C. (2011). Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet. Muscle 1, 4. https://doi.org/10.1186/2044-5040-1-4
  23. Steinberg, S.F. (2008). Structural basis of protein kinase C isoform function. Physiol. Rev. 88, 1341-1378. https://doi.org/10.1152/physrev.00034.2007
  24. Suda, T., Jimi, E., Nakamura, I., and Takahashi, N. (1997). Role of 1 alpha,25-dihydroxyvitamin D3 in osteoclast differentiation and function. Methods Enzymol. 282, 223-235. https://doi.org/10.1016/S0076-6879(97)82110-6
  25. Suda, T., Takahashi, N., Udagawa, N., Jimi, E., Gillespie, M.T., and Martin, T.J. (1999). Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 20, 345-357. https://doi.org/10.1210/edrv.20.3.0367
  26. Takayanagi, H. (2007). Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 7, 292-304. https://doi.org/10.1038/nri2062
  27. Takayanagi, H., Ogasawara, K., Hida, S., Chiba, T., Murata, S., Sato, K., Takaoka, A., Yokochi, T., Oda, H., Tanaka, K., et al. (2000). Tcell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 408, 600-605. https://doi.org/10.1038/35046102
  28. Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., Saiura, A., Isobe, M., Yokochi, T., Inoue, J., et al. (2002). Induction and activation of the transcription factor NFATc1 (NFAT2). integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3, 889-901. https://doi.org/10.1016/S1534-5807(02)00369-6
  29. Tan, S.L., and Parker, P.J. (2003). Emerging and diverse roles of protein kinase C in immune cell signalling. Biochem. J. 376, 545-552 https://doi.org/10.1042/BJ20031406
  30. Vilimek, D., and Duronio, V. (2006). Cytokine-stimulated phosphorylation of GSK-3 is primarily dependent upon PKCs, not PKB. Biochem. Cell Biol. 84, 20-29. https://doi.org/10.1139/o05-154
  31. Wang, J., Wang, N., Xie, J., Walton, S.C., McKown, R.L., Raab, R.W., Ma, P., Beck, S.L., Coffman, G.L., Hussaini, I.M., et al. (2006a). Restricted epithelial proliferation by lacritin via PKCalphadependent NFAT and mTOR pathways. J. Cell Biol. 174, 689-700. https://doi.org/10.1083/jcb.200605140
  32. Wang, Q., Zhou, Y., and Evers, B.M. (2006b). Neurotensin phosphorylates GSK-3alpha/beta through the activation of PKC in human colon cancer cells. Neoplasia 8, 781-787. https://doi.org/10.1593/neo.06259
  33. Wong, B.R., Rho, J., Arron, J., Robinson, E., Orlinick, J., Chao, M., Kalachikov, S., Cayani, E., Bartlett, F.S., 3rd, Frankel, W.N., et al. (1997). TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J. Biol. Chem. 272, 25190-25194. https://doi.org/10.1074/jbc.272.40.25190
  34. Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosaki, M., Mochizuki, S., Tomoyasu, A., Yano, K., Goto, M., Murakami, A., et al. (1998). Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. USA 95, 3597-3602. https://doi.org/10.1073/pnas.95.7.3597
  35. Zhu, T., Tsuji, T., and Chen, C. (2010). Roles of PKC isoforms in the induction of apoptosis elicited by aberrant Ras. Oncogene 29, 1050-1061. https://doi.org/10.1038/onc.2009.344

Cited by

  1. PKCβII-mediated cross-talk of TRPV1/CB2 modulates the glucocorticoid-induced osteoclast overactivity vol.115, 2017, https://doi.org/10.1016/j.phrs.2016.11.039
  2. Regulation of osteoclast differentiation and actin ring formation by the cytolinker protein plectin vol.489, pp.4, 2017, https://doi.org/10.1016/j.bbrc.2017.05.174
  3. The scaffold protein RACK1 mediates the RANKL-dependent activation of p38 MAPK in osteoclast precursors vol.8, pp.379, 2015, https://doi.org/10.1126/scisignal.2005867
  4. Effect of corticision on orthodontic tooth movement in a rat model as assessed by RNA sequencing vol.48, pp.3, 2017, https://doi.org/10.1007/s10735-017-9718-3
  5. Protein tyrosine phosphatase SHP-1 modulates osteoblast differentiation through direct association with and dephosphorylation of GSK3β vol.439, 2017, https://doi.org/10.1016/j.mce.2016.08.048
  6. Regulation of Hedgehog signaling Offers A Novel Perspective for Bone Homeostasis Disorder Treatment vol.20, pp.16, 2019, https://doi.org/10.3390/ijms20163981
  7. Knockout of p75 neurotrophin receptor attenuates the hyperphosphorylation of Tau in pR5 mouse model vol.11, pp.17, 2014, https://doi.org/10.18632/aging.102202
  8. Diacylglycerol Kinase ζ Regulates Macrophage Responses in Juvenile Arthritis and Cytokine Storm Syndrome Mouse Models vol.204, pp.1, 2014, https://doi.org/10.4049/jimmunol.1900721
  9. Physiologic osteoclasts are not sufficient to induce skeletal pain in mice vol.25, pp.1, 2021, https://doi.org/10.1002/ejp.1662
  10. The Potential Role of RP105 in Regulation of Inflammation and Osteoclastogenesis During Inflammatory Diseases vol.9, pp.None, 2021, https://doi.org/10.3389/fcell.2021.713254
  11. Towards better understanding of giant cell granulomas of the oral cavity vol.74, pp.8, 2014, https://doi.org/10.1136/jclinpath-2020-206858