DOI QR코드

DOI QR Code

Progressive Failure Analysis of Adhesive Joints of Filament-Wound Composite Pressure Vessel

필라멘트 와인딩 복합재 압력용기의 접착 체결부에 대한 점진적 파손 해석

  • Received : 2014.06.20
  • Accepted : 2014.08.15
  • Published : 2014.11.01

Abstract

This study performed the progressive failure analysis of adhesive joints of a composite pressure vessel with a separated dome by using a cohesive zone model. In order to determine the input parameters of a cohesive element for numerical analysis, the interlaminar fracture toughness values in modes I and II and in the mixed mode for the adhesive joints of the composite pressure vessel were obtained by a material test. All specimens were manufactured by the filament winding method. A mechanical test was performed on adhesively bonded double-lap joints to determine the shear strength of the adhesive joints and verify the reliability of the cohesive zone model for progressive failure analysis. The test results showed that the shear strength of the adhesive joints was 32MPa; the experiment and analysis results had an error of about 4.4%, indicating their relatively good agreement. The progressive failure analysis of a composite pressure vessel with an adhesively bonded dome performed using the cohesive zone model showed that only 5.8% of the total adhesive length was debonded and this debonded length did not affect the structural integrity of the vessel.

본 논문에서는 CZM(Cohesive Zone Model)을 이용하여 돔 분리형 복합재 압력용기 접착 체결부의 점진적 파손 해석에 대한 연구를 수행하였다. 접착 요소(cohesive element)의 물성을 도출하기 위해 모드I, II 그리고 혼합모드에 대한 층간파괴인성들을 시험을 통해 도출하였다. 이때, 모든 시험편은 복합재 압력용기와 동일한 필라멘트 와인딩 제작공정을 통해 제작되었다. 이중 겹치기 이음(double-lap joint) 시험은 접착제의 전단강도와 CZM을 이용한 점진적 파손해석의 신뢰도 검증을 위해 수행하였다. 그 결과, 접착제의 전단강도는 시험으로부터 32MPa을 얻었고, 시험과 해석의 오차는 약 4.4%의 오차가 발생하여 CZM이 접착 체결부의 점진적 파손 거동을 비교적 잘 모사함을 확인하였다. 최종적으로 신뢰성이 검증된 CZM을 복합재 압력용기 접착 체결부에 적용하여 운용하중조건에서의 점진적 파손해석을 수행한 결과, 전체 200mm를 갖는 접착 체결부 길이의 약 5.8%만이 점진적 파손이 발생하는 것으로 나타나 복합재 압력용기의 구조 안전성에는 영향을 주지 않음을 확인하였다.

Keywords

References

  1. Park, J. S., Kim, H. K., Kim, C. U., Hwang, T. K. Hong, C. S. and Kim, C. G., 2001, "Behavior Analysis and Strain Measurement of the Filament Wound Composite Tank Part I. Finite Element Analysis of the Filament Wound Tank," The Korean Society for Aeronautical & Space Sciences, Vol. 29, No. 7, pp. 49-55.
  2. Mard, F., 1993, "Design, Manufacture and Test of the Composite Case for ERINT-1 Solid Rocket Motor," 29th AIAA/ASME/SAE/ASEE Joint Propulsion Conference.
  3. Yurko III, A. A. and Esslinger, J. R., 2005, "Affordable High Performance Composite Case Rocket Motor Manufacturing," 41st AIAA/ASME/ SAE/ASEE Joint Propulsion Conference.
  4. Lee, Y. H., Ban, C. S., Choi, J. H. and Kweon, J. H., 2008, "Failure Load Prediction of the Composite Adhesive Joint using the Damage Zone Ratio," The Journal of the Korean Society for Composite Materials, Vol. 21, No. 4, pp. 22-28.
  5. Kim, W. S., Jang, C. J. and Lee, J. J., 2011, "Mixed-Mode Fracture Toughness Measurement of a Composite/Metal Interface," The Journal of the Korean Society for Composite Materials, Vol. 24, No. 2, pp. 1-8. https://doi.org/10.7234/kscm.2011.24.2.001
  6. Lee, C. J., Lee, S. K., Ko, D. C. and Kim, B. M., 2009, "Evaluation of Adhesive Properties Using Cohesive Zone Model : Mode I," Trans. Korean Soc. Mech. Eng. A, Vol. 33, No. 5, pp. 474-481. https://doi.org/10.3795/KSME-A.2009.33.5.474
  7. ASTM International, 2007, Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, ASTM D5528.
  8. ASTM International, 2006, Standard Test Method for Mixed Mode I-Mode II Interlaminar Fracture Toughness of Unidirectional Fiber Reinforced Polymer Matrix Composites, ASTM D6671/D6671M.
  9. James, R. R. and John. Jr, C. R., 1990, "Mixed-Mode Bending Method for Delamination Testing," AIAA Journal, Vol. 28, No. 7, pp. 1270-1276. https://doi.org/10.2514/3.25204
  10. ASTM International, 2008, Standard Test Method for Strength Properties of Double Lap Shear Adhesive Joints by Tension Loading, ASTM D3528.
  11. Camanho, P. P., Davila, C. G. and de Moura, M. F., 2003, "Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials," The Journal of Composite Materials, Vol. 37, No. 16, pp. 1415-1438. https://doi.org/10.1177/0021998303034505
  12. Wang, C. H. and Chalkley, P., 2000, "Plastic Yielding of a Film Adhesive Under Multiaxial Stresses," International Journal of Adhesion & Adhesive, Vol. 20, pp. 155-164. https://doi.org/10.1016/S0143-7496(99)00033-0
  13. Aydin, M. D., Ozel, A. and Temiz, S., 2004, "Non-linear Stress and Failure Analysis of Adhesively-Bonded Joints Subjected to a Bending Moment," International Journal of Adhesion & Adhesive, Vol. 18, No. 14, pp. 1589-1602.
  14. Baker, A. A., Dutton, S. and Kelly, D. W., 2004, "Composite Materials for Aircraft Structures," AIAA Inc., Reston, USA.
  15. Cui, W. C., Wisnom, M. R. and Jones, M., 1992, "A Comparison of Failure Criteria to Predict Delamination of Unidirectional Glass/Epoxy Specimens Waisted Through the Thickness," Composites, Vol. 23, No. 3, pp. 158-166. https://doi.org/10.1016/0010-4361(92)90436-X
  16. Benzeggagh, M. L. and Kenane, M., 1996, "Measure of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites with Mixed-Mode Bending Apparatus," Composites Science and Technology, Vol. 56, pp. 439-449. https://doi.org/10.1016/0266-3538(96)00005-X

Cited by

  1. Prediction of onset and propagation of damage in the adhesive joining of a dome-separated composite pressure vessel including temperature effects vol.18, pp.12, 2017, https://doi.org/10.1007/s12541-017-0208-z