DOI QR코드

DOI QR Code

Characteristic Analysis and Fabrication of Bioceramic Scaffold using Mixing Ratios of TCP/HA by Fused Deposition Modeling

압출 적층 조형 기술을 이용한 TCP/HA 의 혼합비율에 따른 바이오 세라믹 인공지지체의 제작 및 특성 연구

  • Received : 2014.06.23
  • Accepted : 2014.08.07
  • Published : 2014.11.01

Abstract

Tissue engineering is an emerging research field that has the potential to restore, regenerate and repair damaged bone tissue and organs. Tricalcium phosphate and hydroxyapatite biomaterials-based calcium phosphate are excellent materials that have both osteoconduction and biocompatibility for bone tissue regeneration. In this study, solution structures were successfully fabricated using a fused deposition modeling system based on deposition and heating devices. The morphology characteristics of the bioceramic scaffolds sintered at a temperature of $1,300^{\circ}C$ were analyzed by scanning electron microscopy. The effects of various blended TCP/HA ratio on the microstructure and shrinkage were studied. The mechanical properties of the scaffolds were measured using a compression testing machine from stress-strain curves on the crosshead velocity of 1 mm/min. The fabricated scaffolds were evaluated by cell proliferation tests of MG-63 cells. The results of this study suggest that the blended TCP(75 wt%)/HA(25 wt%) scaffold is an appropriate scaffold for bone tissue regeneration.

조직공학은 손상된 골 조직 및 장기를 복원, 재생, 그리고 복구할 수 있는 잠재력을 가진 새로운 학문 분야이다. 인산칼슘계 세라믹스인 삼인산칼슘과 수산회인회석은 골 조직 재생을 위해 골전도성과 생체적합성의 특성을 가진 우수한 재료로 알려져 있다. 본 연구에서, 혼합 용액 구조물은 적층 및 히터장치를 기반으로 한 압출 적층 조형 시스템을 이용하여 제작되었다. 바이오 세라믹 인공지지체는 $1,300^{\circ}C$의 고온에서 소결되었고, 또한 형태학적인 특성은 주사전자현미경을 통해 분석되었다. 게다가, TCP/HA 의 혼합비율에 따른 미세구조물과 수축률에 대한 효과는 연구되었다. 인공지지체의 기계적 특성은 1 mm/min 의 크로스헤드 속도로 압축 시험기를 통해 측정되었고, 인공지지체의 세포 증식평가를 위해 MG-63 세포를 이용하였다. 본 연구의 결과는 혼합된 TCP(75 wt%)/HA(25 wt%) 인공지지체가 골 조직 재생을 위해 적합한 인공지지체라는 것을 제안한다.

Keywords

References

  1. Yang, S., Leong, F., Du, Z. and Chua, C. K., 2001, "The Design of Scaffolds for Use in Tissue Engineering. Part I. Traditional Factors," Tissue Eng., Vol. 7, No. 6, pp. 679-689. https://doi.org/10.1089/107632701753337645
  2. Yoshikawa, H. and Myoui, A., 2005, "Bone Tissue Engineering with Porous Hydroxyapatite Ceramics," J. Artif. Organs., Vol. 8, No. 3, pp. 131-136. https://doi.org/10.1007/s10047-005-0292-1
  3. Kim, K. L., Ok, K. M., Kim, D. H., Park, H. C. and Yoon, S. Y., 2013, "Fabrication and Characterization of Biphasic Calcium Phosphate Scaffolds with an Unidirectional Macropore Structure Using Tertiary Butyl Alcohol Based Freeze Gel Casting Method," J. Korean Ceram, Soc., Vol. 50, No. 4, pp. 263-268. https://doi.org/10.4191/kcers.2013.50.4.263
  4. Kim, Y. H., Jyoti, A., Byun, I. S., Min, Y. K., Yang, H. M., Lee, B. T. and Song, H. Y., 2008, "Effects of Macrophage on Biodegradation of $\beta$-Tricalcium Phosphate Bone Graft Substitute," J. Korean Ceram. Soc., Vol. 45, No. 10, pp. 618-624. https://doi.org/10.4191/KCERS.2008.45.1.618
  5. Hutmacher, D. W., 2000, "Scaffolds in Tissue Engineering Bone and Cartilage," Biomaterials, Vol. 21, Issue 24, pp. 2529-2543. https://doi.org/10.1016/S0142-9612(00)00121-6
  6. Sachlos, E. and Czernuszka, J. T., 2003, "Making Tissue Engineering Scaffolds Work. Review on the Application of Solid Freeform Fabrication Technology to the Production of Tissue Engineering Scaffolds," Eur. Cell. Mater., Vol. 5, pp. 29-40. https://doi.org/10.22203/eCM.v005a03
  7. Zhang, X., Cao, C., Ma, X. and Li, Y., 2012, "Optimization of Macroporous 3-D Silk Fibrin Scaffolds by Salt-Leaching Procedure in Organic Solvent-Free Conditions," J. Mater. Sci: Mater. Med., Vol. 23, pp. 315-324.
  8. Hutmacher, D. W., Sittinger, M. and Risbud, M. V., 2004, "Scaffold-Based Tissue Engineering: Rationale for Computer-Aided Design and Solid Free-Form Fabrication Systems," Trends Biomechnol., Vol. 22, Issue 7, pp. 354-362. https://doi.org/10.1016/j.tibtech.2004.05.005
  9. Bartolo, P. J. S., Almeida, H. and Laoui, T., 2009, "Rapid Prototyping and Manufacturing for Tissue Engineering Scaffolds," Int. J. Comput. Appl. Tech., Vol. 36, Issue 1, pp. 1-9. https://doi.org/10.1504/IJCAT.2009.026664
  10. Lee, S. J., Kang, T. Y., Park, J. K., Rhie, J. W., Hahn, S. K. and Cho, D. W., 2007, "Development of Three-Dimensional Scaffold for Cartilage Regeneration Using Microstereolithography," Proceeding of KSME, Vol. 5, pp. 188-193.
  11. Wikipedia, "3D Printing," http://ko.wikipedia.org/wiki/3D_printing
  12. Seol, Y. J., Park, J. Y. and Cho, D. W., 2011, "Fabrication of Calcium Phosphate Scaffolds Using Projection-Based Microstereolithography and Their Effects on Osteogenesis," Trans. Korean Soc. Mech. Eng. B, Vol. 35, No. 11, pp. 1237-1242. https://doi.org/10.3795/KSME-B.2011.35.11.1237
  13. Soon, Y. M., Shin, K. H., Koh, Y. H., Lee, J. H., Choi, W. Y. and Kim H. E., 2011, "Fabrication and Compressive Strength Hydroxyapatite Scaffolds with a Functionally Graded Core/Shell Structure," J. Eur. Ceram. Soc., Vol. 31, Issues 1-2, pp. 13-18. https://doi.org/10.1016/j.jeurceramsoc.2010.09.008
  14. Korea Communications Agency, 2013, "3D Printing Technology and Applications," Vol. 6, pp. 1-6.
  15. Seol, Y. J., Kim, J. Y., Lee, S. J., Park, E. K., Kim, S, Y. and Cho, D. W., 2008, "Fabrication of Hydroxyapatite Scaffold Using Micro-Stereolithography and Mold Technology," Proceeding of KSME(08BE044), pp. 102-103.
  16. Schumacher, M., Deisinger, U., Detsch, R. and Ziegler, G., 2010 "Indirect Rapid Prototyping of Biphasic Calcium Phosphate Scaffolds as Bone Substitutes: Influence of Phase Composition, Macroporosity and Pore Geometry on Mechanical Properties," J. Mater. Sci: Mater. Med., Vol. 21, No. 12, pp. 3119-3127. https://doi.org/10.1007/s10856-010-4166-6
  17. Miranda, P., Saiz, E., Gryn, K. and Tomsia, A. P., 2006, "Sintering and Robocasting of Beta- Tricalcium Phosphate Scaffolds for Orthopaedic Applications," Acta Biomater., Vol. 2, No. 4, pp. 457-466. https://doi.org/10.1016/j.actbio.2006.02.004
  18. Vivanco, J., Aiyanger, A., Araneda, A. and Ploeg, H. L., 2012, "Mechanical Characterization of Injection-Molded Macro Porous Bioceramic Bone Scaffolds," J. Mech. Behav. Biomed. Mater., Vol. 9, pp. 137-152. https://doi.org/10.1016/j.jmbbm.2012.02.003
  19. Sa, M. W. and Kim, J. Y., 2013, "Effect of Various Blending Ratios on the Cell Characteristics of PCL and PLGA Scaffolds Fabricated by Polymer Deposition System," Int. J. Precis. Eng. Manuf., Vol. 14, No. 4, pp. 649-655. https://doi.org/10.1007/s12541-013-0087-x
  20. Mirhadi, B., Mehdikhani, B. and Askari, N., 2011, "Synthesis of Nano-Sized $\beta$-Tricalcium Phosphate via Wet Precipitation," Process. Appl. Ceram., Vol. 5, No. 4, pp. 193-198. https://doi.org/10.2298/PAC1104193M
  21. http://hydroxyapatite.wikispaces.com/
  22. Kim, H., J., Park, I., K., Kim, J. H., Cho, C. S. and Kim, M., S., 2012, "Gas Foaming Fabrication of Porous Biphasic Calcium Phosphate for Bone Regeneration," Tissue Eng. Regen. Med., Vol. 9, No. 2, pp. 63-68. https://doi.org/10.1007/s13770-012-0022-8
  23. Oh, S. H., Park, I. K., Kim, J. M. and Lee, J. H., 2007, "In Vitro and in Vivo Characteristics of PCL Scaffolds with Pore Size Gradient Fabricated by a Centrifugation Method," Biomaterials, Vol. 28, pp. 1664-1671. https://doi.org/10.1016/j.biomaterials.2006.11.024
  24. Park, K. B., Park, J. W., Ahn, H. U., Yang, D. J., Choi, S. K., Jang. I. S., Yeo, S. I. and Seo, J. Y., 2006, "Comparative Study on the Physicochemical Properties and Cytocompatibility of Microporous Biphasic Calcium Phosphate Ceramics as a Bone Graft Substitute," J. Korean Acad. Periodontol., Vol. 36, pp. 797-808.
  25. Tripathi, G. and Basu, B, 2012, "A Porous Hydroxyapatite Scaffold for Bone Tissue Engineering Physic-Mechanical and Biological Evaluations," Ceram. Inter., Vol. 38, pp. 341-349. https://doi.org/10.1016/j.ceramint.2011.07.012
  26. Vorndran, E., Klarner, M., Klammert, U., Grover, L. M., Patel, S., Barralet, J. E. and Gbureck, U., 2008, "3D Powder Printing of $\beta$-Tricalcium Phosphate Ceramics Using Different Strategies," Adv. Eng. Mater., Vol. 10, pp. 67-71. https://doi.org/10.1002/adem.200700230

Cited by

  1. Fabrication of BCP/Silica Scaffolds with Dual-Pore by Combining Fused Deposition Modeling and the Particle Leaching Method vol.40, pp.10, 2016, https://doi.org/10.3795/KSME-A.2016.40.10.865