A Research on the Applicability of Water Quality Analysis using the Hyperspectral Sensor

초분광센서를 이용한 수질 분석의 적용성에 관한 연구

  • 박연정 (K-water 연구원 수질분석연구센터) ;
  • 장현지 (K-water 연구원 수질분석연구센터) ;
  • 김윤석 (K-water 연구원 수질분석연구센터) ;
  • 백경희 (K-water 연구원 수질분석연구센터) ;
  • 이희숙 (K-water 연구원 수질분석연구센터)
  • Received : 2014.09.01
  • Accepted : 2014.09.29
  • Published : 2014.09.30

Abstract

The Hyperspectral Imaging (HSI) technology is mainly used to investigate land coverage, mineral, forest, vegetation, and so on. Recently, the HSI technology is recognized as one of the promising technique to assess and monitor water quality in real-time. This study is designed to provide a review on HSI data processing methods, hyper-spectral sensors, and applications of water quality hyper-spectral data. In order to understand the status of hyper-spectral remote sensing technology and research development of water quality, we largely discuss multi-spectral and hyper-spectral sensing, the type of hyper-spectral sensor, data processing technology, research present condition on water quality items such as chlorophyll a, phytoplankton, total suspended solids, total phosphorus, total nitrogen. However, the obtained data on water quality by HSI system is still shortage to apply water pollutants monitoring. In addition, the HSI data of target water quality compounds dependent on physiological step of inherent optical property and specific property of water quality is significantly requiring. Although there are various obstacles on HSI technologies as useful method to assess water quality, the advantages of HSI to investigate water pollutants around broad area and monitor point-sources have been recognized in positively. The HSI is based on technology that provides high resolution; higher accuracy; high sensitivity compared the multi-spectral imaging. In this study, the applications of HSI sensors to water quality monitoring and novel water management in environment, and the possibility to apply HSI technology for monitoring water quality are investigated to researching related paper.

Keywords

References

  1. 허아양, 최승원, 이재훈, 김태형, 박동조, "초분광 분해기의 광학계 설계 및 영상처리", 한국군사과학기술학회지, 2010, 13(2), 328-335.
  2. 지준화, "최대 부피 Simplex 기반의 Isomap을 위한 랜드마크 추출", 대한원격탐사학회지, 2013, 29(5), 509-516. https://doi.org/10.7780/kjrs.2013.29.5.6
  3. 송아람, 장안진, 김용일, 최재완, "AISA 초분광 영상에 대한 Endmember 추출 알고리즘의 적용성 분석", 대한원격탐사학회지, 2013, 29(5), 527-535. https://doi.org/10.7780/kjrs.2013.29.5.8
  4. J. McNeely, and G. Geiger, "K-Means Based Spatial Aggregation for Hyperspectral Compression", In Data Compression Conference (DCC), 2014, 416.
  5. M. Imani, and H. Ghassemian, "Feature extraction using partitioning of feature space for hyperspectral images classification", In Intelligent Systems (ICIS), 2014, 1-5.
  6. K. E. Themelis, A. A. Rontogiannis, and K. D. Koutroumbas, "Semisupervised hyperspectral image unmixing using a variational Bayes algorithm", arXiv preprint arXiv, 2014, 1406, 4705.
  7. R. Wright, P. Lucey, S. Crites, K. Horton, M. Wood, and H. Garbeil, "BBM/EM design of the thermal hyperspectral imager: An instrument for remote sensing of earth's surface, atmosphere and ocean, from a microsatellite platform", Acta Astronautica, 2013, 87, 182-192. https://doi.org/10.1016/j.actaastro.2013.01.001
  8. G. J. Bellante, S. L. Powell, R. L. Lawrence, K. S. Repasky, and T. A. O. Dougher, "Aerial detection of a simulated CO2 leak from a geologic sequestration site using hyperspectral imagery", International Journal of Greenhouse Gas Control, 2013, 13, 124-137. https://doi.org/10.1016/j.ijggc.2012.11.034
  9. C. Jing, Y. Bokun, W. Runsheng, T. Feng, Z. Yingjun, L. Dechang, and W. Wei, "Regional-scale mineral mapping using ASTER VNIR/SWIR data and validation of reflectance and mineral map products using airborne hyperspectral CASI/SASI data", International Journal of Applied Earth Observation and Geoinformation, 2014, 33, 127-141. https://doi.org/10.1016/j.jag.2014.04.014
  10. M. Haest, T. Cudahy, A. Rodger, C. Laukamp, E. Martens, and M. Caccetta, "Unmixing the effects of vegetation in airborne hyperspectral mineral maps over the Rocklea Dome iron-rich palaeochannel system (Western Australia)", Remote Sensing of Environment, 2013, 129, 17-31. https://doi.org/10.1016/j.rse.2012.10.011
  11. G. R. Kodikara, T. Woldai, F. J. van Ruitenbeek, Z. Kuria, F. van der Meer, K. D. Shepherd, and G. J. van Hummel, "Hyperspectral remote sensing of evaporate minerals and associated sediments in Lake Magadi area, Kenya", International Journal of Applied Earth Observation and Geoinformation, 2012, 14(1), 22-32. https://doi.org/10.1016/j.jag.2011.08.009
  12. A. Lausch, M. Heurich, D. Gordalla, H. J. Dobner, S. Gwillym-Margianto, and C. Salbach, "Forecasting potential bark beetle outbreaks based on spruce forest vitality using hyperspectral remote-sensing techniques at different scales", Forest Ecology and Management, 2013, 308, 76-89. https://doi.org/10.1016/j.foreco.2013.07.043
  13. J. Behmann, J. Steinrücken, and L. Plümer, "Detection of early plant stress responses in hyperspectral images", ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93, 98-111. https://doi.org/10.1016/j.isprsjprs.2014.03.016
  14. G. Lu, and B. Fei, "Medical hyperspectral imaging: a review", Journal of biomedical optics, 2014, 19(1), 1-23.
  15. M. Govender, K. Chetty, and H. Bulcock, "A review of hyperspectral remote sensing and its application in vegetation and water resource studies", Water Sa, 2007, 33(2), 145-151.
  16. J. Qin, K. Chao, M. S. Kim, R. Lu, and T. F. Burks, "Hyperspectral and multispectral imaging for evaluating food safety and quality", Journal of Food Engineering, 2013, 118(2), 157-171. https://doi.org/10.1016/j.jfoodeng.2013.04.001
  17. K. S. Lee, W. B. Cohen, R. E. Kennedy, T. X. Maiersperger, and S. T. Gower, "Hyperspectral versus multispectral data for estimating leaf area index in four different biomes", Remote Sensing of Environment, 2004, 91(3), 508-520. https://doi.org/10.1016/j.rse.2004.04.010
  18. B. Lubac, H. Loisel, N. Guiselin, R. Astoreca, L. Felipe Artigas, and X. Mériaux, "Hyperspectral and multispectral ocean color inversions to detect Phaeocystis globosa blooms in coastal waters", Journal of Geophysical Research: Oceans (1978-2012), 2008, 113.
  19. MODIS, http://modis.gsfc.nasa.gov, August 2014.
  20. AVIRIS, http://aviris.jpl.nasa.gov, August 2014.
  21. M. Borengasser, W. S. Hungate, and R. Watkins, "Hyperspectral remote sensing: principles and applications". 2010, 1-119, Crc Publishing, USA.
  22. S. Kaewpijit, J. Le Moigne, and T. El-Ghazawi, "Automatic reduction of hyperspectral imagery using wavelet spectral analysis", Geoscience and Remote Sensing, IEEE Transactions on, 2003, 41(4), 863-871. https://doi.org/10.1109/TGRS.2003.810712
  23. F. Van Der Meer and V. Kato, "Developing a schematic petrogenetic transect for a contact aureole using field spectrometry; a case study in Los Santos, Salamanca Province, central-western Spain", International Journal of Remote Sensing, 2002, 23(23), 5087-5094. https://doi.org/10.1080/01431160210147063
  24. P. J. Zarco-Tejada, J. R. Miller, T. L. Noland, G. H. Mohammed, and P. H. Sampson, "Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data", Geoscience and Remote Sensing, IEEE Transactions on, 2001, 39(7), 1491-1507. https://doi.org/10.1109/36.934080
  25. B. Aiazzi, L. Alparone, and S. Baronti, "Near-lossless image compression by relaxation-labelled prediction", Signal Processing, 2002, 82(11), 1619-1631. https://doi.org/10.1016/S0165-1684(02)00305-5
  26. P. J. Curran and J. L. Dungan, "Estimation of signal-tonoise: a new procedure applied to AVIRIS data", Geoscience and Remote Sensing, IEEE Transactions on, 1989, 27(5), 620-628. https://doi.org/10.1109/TGRS.1989.35945
  27. 김선화, 이규성, 마정림, 국민정, "초분량 원격탐사의 특성, 처리기법 및 활용 현황", 대한원격탐사학회지, 2005, 21(4), 341-369.
  28. A. Berk, L. S. Bernstein, G. P. Anderson, P. K. Acharya, D. C. Robertson, J. H. Chetwynd, and S. M. Adler-Golden, "MODTRAN cloud and multiple scattering upgrades with application to AVIRIS", Remote Sensing of Environment, 1998, 65(3), 367-375. https://doi.org/10.1016/S0034-4257(98)00045-5
  29. M. Herold, D. A. Roberts, M. E. Gardner, and P. E. Dennison, "Spectrometry for urban area remote sensing-Development and analysis of a spectral library from 350 to 2400 nm", Remote Sensing of Environment, 2004, 91(3), 304-319. https://doi.org/10.1016/j.rse.2004.02.013
  30. X. Jiang, L. Tang, C. Wang, and C. Wang, "Spectral characteristics and feature selection of hyperspectral remote sensing data", International Journal of Remote Sensing, 2004, 25(1), 51-59. https://doi.org/10.1080/0143116031000115292
  31. T. A. Warner, K. Steinmaus, and H. Foote, "An evaluation of spatial autocorrelation feature selection", International Journal of Remote Sensing, 1999, 20(8), 1601-1616. https://doi.org/10.1080/014311699212632
  32. J. A. Benediktsson, J. R. Sveinsson, and K. Amason, "Classification and feature extraction of AVIRIS data", Geoscience and Remote Sensing, IEEE Transactions on, 1995, 33(5), 1194-1205. https://doi.org/10.1109/36.469483
  33. P. Launeau, J. Girardeau, C. Sotin, and J. M. Tubia, "Comparison between field measurements and airborne visible and infrared mapping spectrometry (AVIRIS and HyMap) of the Ronda peridotite massif (south-west Spain)", International Journal of Remote Sensing, 2004, 25(14), 2773-2792. https://doi.org/10.1080/01431160310001609699
  34. M. Keshava and J. F. Mustard, "Spectral unmixing", Signal Processing Magazine, IEEE, 2002, 19(1), 44-57. https://doi.org/10.1109/79.974727
  35. A. A. Green, M. Berman, P. Switzer, and M. D. Craig, "A transformation for ordering multispectral data in terms of image quality with implications for noise removal", Geoscience and Remote Sensing, IEEE Transactions on, 1988, 26(1), 65-74. https://doi.org/10.1109/36.3001
  36. C. I. Chang and Q. Du, "Interference and noiseadjusted principal components analysis", Geoscience and Remote Sensing, IEEE Transactions on, 1999, 37(5), 2387-2396. https://doi.org/10.1109/36.789637
  37. D. Lu, P. Mausel, E. Brondizio, and E. Moran, "Change detection techniques", International journal of remote sensing, 2004, 25(12), 2365-2401. https://doi.org/10.1080/0143116031000139863
  38. A. P. Williams and E. R. Hunt, "Estimation of leafy spurge cover from hyperspectral imagery using mixture tuned matched filtering" Remote Sensing of Environment, 2002, 82(2), 446-456. https://doi.org/10.1016/S0034-4257(02)00061-5
  39. M. Ichino and J. Sklansky, "Optimum feature selection by zero-one integer programming", IEEE transactions on systems, man, and cybernetics, 1984, 14(5), 737-746.
  40. B. E. Hubbard, J. K. Crowley, and D. R. Zimbelman, "Comparative alteration mineral mapping using visible to shortwave infrared ($0.4-2.4{\mu}m$) Hyperion, ALI, and ASTER imagery", Geoscience and Remote Sensing, IEEE Transactions on, 2003, 41(6), 1401-1410. https://doi.org/10.1109/TGRS.2003.812906
  41. B. C. Gao and A. F. Goetzt, "Retrieval of equivalent water thickness and information related to biochemical components of vegetation canopies from AVIRIS data", Remote sensing of environment, 1995, 52(3), 155-162. https://doi.org/10.1016/0034-4257(95)00039-4
  42. S. H. Kim, C. S. Yang, and K. Ouchi, "Validation of the semi-analytical algorithm for estimating vertical underwater visibility usiung MODIS data in the waters around Korea", Korean Journal of Remote Sensing, 2013, 29(6), 601-610. https://doi.org/10.7780/kjrs.2013.29.6.3
  43. 김용민, 변영기, 허용, 유기윤, "MODIS Level 2 Data 를 이용한 Cochlodinium Polykrikoides 적조탐지", 대한토목학회논문집, 2007, 27(4D), 535-540.
  44. 정주용, 안명환, 손은하, 서애숙, "Terra/MODIS 자료를 이용한 해수면온도 산출", 대기, 2002, 12(1), 173-176.
  45. 오은경, 양찬수, "다종 위성 자료를 활용한 해수면온도 (SST) 합성기법 개발 연구", 해양환경안전학회지, 2011, 17(3), 197-202.
  46. 김용민, 김형태, "2 단계 필터링 기반 적조 탐지 알고리즘에 관한 연구", 대한원격탐사학회지, 2008, 24(4), 325-331.
  47. 오승열, 윤홍주, "MODIS/AQUA 를 이용한 적조탐지 연구", 한국전자통신학회 학술대회지, 2012, 6(2), 309-312.
  48. 최은영, 이재운, 이재관, "고해상도 위성영상을 이용한 낙동강 유역의 클로로필 a 농도 추정", 대한원격탐사학회지, 2011, 27(5), 613-623. https://doi.org/10.7780/kjrs.2011.27.5.613
  49. 김상우, 정희동, "복합 위성을 이용한 허베이스피리트 유류오염해역 모니터링", 해양환경안전학회지, 2009, 15(4), 283-288.
  50. 이권호, 이소현, "해색위성 원격탐사를 이용한 부유성 녹조 모니터링". 한국지리정보학회지, 2012, 15(3), 137-147.
  51. 홍기훈, 안유환, 손영백, 유주형, 김창준, 양동범, 정창수, "MODIS 를 이용한 춘. 하계 동해 서남부 해역의 해수 중 입자성 유기탄소 함량 추정 알고리즘 개선", 대한원격탐사학회지, 2011, 27(2), 107-120. https://doi.org/10.7780/kjrs.2011.27.2.107
  52. 정종철, "Landsat TM 과 MODIS 영상을 이용한 새만금해역 표층수온 변화 탐지", 환경영향평가, 2011, 20(2), 199-205.
  53. 서영상, 김복기, 이나경, 장이현, 황재동, 이용화, 오현주, "MODIS 해수색 위성 자료를 이용한 동중국해 turbid water 의 변동 모니터링", 한국수산과학회 공동학술발표요약집, 2002, 156-157.
  54. 이나경, 서영상, 김영섭, "위성원격탐사에 의한 동중국해 재부상 부유사의 계절적 수평분포 특성", 한국지리정보학회지, 2003, 6(3), 151-161.
  55. M. S. Wong, S. H. L Kwan, J. K. Young, J. Nichol, L. Zhangging, and N. Emerson, "Modelling of Suspendid Solids and Sea Surface Salinity in Hong Kong using Aqua/MODIS Satellite Images", Korean Journal of Remote Sensing, 2007, 23(3), 161-169. https://doi.org/10.7780/kjrs.2007.23.3.161
  56. 정종철, "MODIS에 의한 동중국해의 해양환경분석 기법", 남서울대학교 논문집, 2009, 15.
  57. S. Oh and H. J. Yoon, "A Comparative Study for Red Tide Detection Methods Using GOCI and MODIS", Korean Journal of Remote Sensing, 2013, 29(3). 331-335. https://doi.org/10.7780/kjrs.2013.29.3.6
  58. 손영백, 유주형, 노재훈, 주세종, 김상현, "남해와 동중국해에서 위성으로 추정된 표층수온 및 클로로필의 장기 변화", Ocean and Polar Research, 2012, 34(2), 201-218. https://doi.org/10.4217/OPR.2012.34.2.201
  59. 정종철, "태풍 매미에 따른 해양환경의 변화 관측 연구", 남서울대학교 논문집, 2010, 16.
  60. 김광은, "초분광 영상자료의 Endmember 추출 속도향상에 관한 연구 초분광 영상자료의 Endmember 추출 속도 향상에 관한 연구", 대한원격탐사학회지, 2012, 28(4), 347-355. https://doi.org/10.7780/kjrs.2012.28.4.1
  61. 이상범, "식생분석을 위한 고분광영상(Hyperspectral Image) 활용방안", 한국환경정책평가연구원 기초연구, 2008, 6.
  62. 박선엽, "원격탐사 자료를 이용한 하와이 해안지역 식생 분류", 한국지역지리학회지, 2006, 12(4), 496-507.
  63. H. J. Hoogenboom, A. G. Dekker, and I. A. Althuis, "Simulation of AVIRIS sensitivity for detecting chlorophyll over coastal and inland waters", Remote Sensing of Environment, 1998, 65(3), 333-340. https://doi.org/10.1016/S0034-4257(98)00042-X
  64. J. F. Mustard, "Relationships of soil, grass, and bedrock over the Kaweah Serpentinite Melange through spectral mixture analysis of AVIRIS data", Remote Sensing of Environment, 2008, 44(2), 293-308.
  65. K. L. Carder, P. Reinersman, R. F. Chen, F. MullerKarger, C. O. Davis, and M. Hamilton, "AVIRIS calibration and application in coastal oceanic environments", Remote Sensing of Environment, 1993, 44(2), 205-216. https://doi.org/10.1016/0034-4257(93)90016-Q
  66. 위광재, "항공 초분광 센서의 소개 및 국내 적용사례에 대해 설명해주세요", 대한토목학회지, 2013, 61(4), 103-108.
  67. 조형갑, 이규성, "침엽수종 분류를 위한 초분광영상과 다중분광영상의 비교", 대한원격탐사학회지, 2014, 30(1), 25-36. https://doi.org/10.7780/kjrs.2014.30.1.3
  68. 김태우, 신한섭, 서용철, "수질 매개변수 추정에 있어서 항공 초분광영상의 가용성 고찰", 대한원격탐사학회지, 2014, 30(1), 61-73. https://doi.org/10.7780/kjrs.2014.30.1.6
  69. 한유경, 김용일, 한동엽, 최재완, "SIFT 기법을 이용한 AISA Eagle 초분광센서의 모자이크영상 생성 SIFT 기법을 이용한 AISA Eagle 초분광센서의 모자이크영상 생성", 2013, 한국측량학회지, 31(2). 165-172.
  70. 한국교육학술정보원, http://www.riss.kr/imdex/do, 2014년 8월.
  71. 한국학술정보, http://kiss.kstudy.com, 2014년 8월.
  72. S. Jay, and M. Guillaume, "A novel maximum likelihood based method for mapping depth and water quality from hyperspectral remote-sensing data", Remote Sensing of Environment, 2014, 147, 121-132. https://doi.org/10.1016/j.rse.2014.01.026
  73. L. G. Olmanson, P. L. Brezonik, and M. E. Bauer, "Airborne hyperspectral remote sensing to assess spatial distribution of water quality characteristics in large rivers: The Mississippi River and its tributaries in Minnesota", Remote Sensing of Environment, 2013, 130, 254-265. https://doi.org/10.1016/j.rse.2012.11.023
  74. A. Abd-Elrahman, M. Croxton, R. Pande-Chettri, G. S. Toor, S. Smith, and J. Hill, "In situ estimation of water quality parameters in freshwater aquaculture ponds using hyperspectral imaging system", ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(4), 463-472. https://doi.org/10.1016/j.isprsjprs.2011.02.005
  75. C. Fan, "Spectral analysis of water reflectance for hyperpsectral remote sensing of water quality in Estuarine water", Journal of Geoscience and Environment Protection, 2014, 2, 19-27. https://doi.org/10.4236/gep.2014.22004
  76. K. Randolph, J. Wilson, L. Tedesco, L. Li, D. Pascual, and E. Soyeux, "Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin", Remote Sensing of Environment, 2008, 112(11), 4009-4019. https://doi.org/10.1016/j.rse.2008.06.002
  77. D. J. Keith, B. A. Schaeffer, R. S. Lunetta, R. W. Gould Jr, K. Rocha, and D. J. Cobb, "Remote sensing of selected water-quality indicators with the hyperspectral imager for the coastal ocean (HICO) sensor", International Journal of Remote Sensing, 2014, 35(9), 2927-2962. https://doi.org/10.1080/01431161.2014.894663
  78. L. Zhou, D. A. Roberts, W. Ma, H. Zhang, and L. Tang, "Estimation of higher chlorophylla concentrations using field spectral measurement and HJ-1A hyperspectral satellite data in Dianshan Lake, China", ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 88, 41-47. https://doi.org/10.1016/j.isprsjprs.2013.11.016
  79. D. Sun, Z. Qiu, Y. Li, K. Shi, and S. Gong, "Detection of Total Phosphorus Concentrations of Turbid Inland Waters Using a Remote Sensing Method", Water, Air, & Soil Pollution, 2014, 225(5), 1-17.
  80. R. M. Igamberdiev, G. Grenzdoerffer, R. Bill, H. Schubert, M. Bachmann, and B. Lennartz, "Determination of chlorophyll content of small water bodies (kettle holes) using hyperspectral airborne data", International Journal of Applied Earth Observation and Geoinformation, 2011, 13(6), 912-921. https://doi.org/10.1016/j.jag.2011.04.001
  81. Z. Mao, V. Stuart, D. Pan, J. Chen, F. Gong, H. Huang, and Q. Zhu, "Effects of phytoplankton species composition on absorption spectra and modeled hyperspectral reflectance", Ecological Informatics, 2010, 5(5), 359-366. https://doi.org/10.1016/j.ecoinf.2010.04.004
  82. E. Vahtmäe, T. Kutser, G. Martin, and J. Kotta, "Feasibility of hyperspectral remote sensing for mapping benthic macroalgal cover in turbid coastal waters-a Baltic Sea case study", Remote Sensing of Environment, 2006, 101(3), 342-351. https://doi.org/10.1016/j.rse.2006.01.009
  83. P. D. Hunter, A. N. Tyler, L. Carvalho, G. A. Codd, and S. C. Maberly, "Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes", Remote Sensing of Environment, 2010, 114(11), 2705-2718. https://doi.org/10.1016/j.rse.2010.06.006
  84. T. Kutser, L. Metsamaa, and A. G. Dekker, "Influence of the vertical distribution of cyanobacteria in the water column on the remote sensing signal. Estuarine", Coastal and Shelf Science, 2008, 78(4), 649-654. https://doi.org/10.1016/j.ecss.2008.02.024
  85. M. Chawira, T. Dube, and W. Gumindoga, "Remote sensing based water quality monitoring in Chivero and Manyame lakes of Zimbabwe", Physics and Chemistry of the Earth, Parts A/B/C, 2013, 66, 38-44. https://doi.org/10.1016/j.pce.2013.09.003
  86. K. Song, L. Li, L. P. Tedesco, S. Li, N. A. Clercin, B. E. Hall, and K. Shi, "Hyperspectral determination of eutrophication for a water supply source via genetic algorithm-partial least squares (GA-PLS) modeling", Science of the Total Environment, 2012, 426, 220-232. https://doi.org/10.1016/j.scitotenv.2012.03.058
  87. 이희숙, 박연정, 김윤석, 백경희, "초분광영상 센싱을 활용한 식물플랑크톤 모니터링 기법 연구", 대한환경공학회, 2014, 357.