DOI QR코드

DOI QR Code

Adsorption of chromium (VI) on functionalized and non-functionalized carbon nanotubes

  • Mubarak, Nabisab Mujawar (Department of Chemical and Petroleum Engineering, Faculty of Engineering, UCSI University) ;
  • Thines, Raj Kogiladas (Department of Chemical and Petroleum Engineering, Faculty of Engineering, UCSI University) ;
  • Sajuni, Noor Rosyidah (Department of Chemical and Petroleum Engineering, Faculty of Engineering, UCSI University) ;
  • Abdullah, Ezzat Chan (Malaysia - Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia) ;
  • Sahu, Jaya Narayan (Department of Petroleum and Chemical Engineering, Faculty of Engineering, Institut Teknologi Brunei) ;
  • Ganesan, Poobalan (Department of Mechanical Engineering, Faculty of Engineering, University of Malaya) ;
  • Jayakumar, Natesan Subramanian (Department of Chemical Engineering, Faculty of Engineering, University of Malaya)
  • Received : 2013.08.16
  • Accepted : 2014.04.08
  • Published : 2014.09.01

Abstract

We did a comparative study on the adsorption capacity of Cr (VI) between functionalized carbon nanotubes (CNTs) and non-functionalized CNTs. The statistical analysis reveals that the optimum conditions for the highest removal of Cr (VI) are at pH 9, with dosage 0.1 gram, agitation speed and time of 120 rpm and 120 minutes, respectively. For the initial concentration of 1.0mg/l, the removal efficiency of Cr (VI) using functionalized CNTs was 87.6% and 83% of non-functionalized CNTs. The maximum adsorption capacities of functionalized and non-functionalized CNTs were 2.517 and 2.49 mg/g, respectively. Langmuir and Freundlich models were adopted to study the adsorption isotherm, which provided a $K_L$ and $K_F$ value of 1.217 L/mg and $18.14mg^{1-n}L^n/g$ functionalized CNT, while 2.365 L/mg and $2.307mg^{1-n}L^n/g$ for non-functionalized CNTs. This result proves that functionalized CNTs are a better adsorbent with a higher adsorption capacity compared with the non-functionalized CNTs.

Keywords

Acknowledgement

Supported by : UCSI University

References

  1. V. K. Gupta, S. Agarwal and T.A. Saleh, Water Res., 45, 1 (2011). https://doi.org/10.1016/j.watres.2010.07.081
  2. Y. Li, S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan, D. Wu and B. Wei, Chem. Phys. Lett., 357, 263 (2002). https://doi.org/10.1016/S0009-2614(02)00502-X
  3. D. B. Kaufman, Am. J. Dis. Child., 119, 374 (1970). https://doi.org/10.1001/archpedi.1970.02100050376021
  4. V. M. Boddu, K. Abburi, J. L. Talbott, E. D. Smith and R. Haasch, Water Res., 42, 633 (2008). https://doi.org/10.1016/j.watres.2007.08.014
  5. M. I. Kandah and J. L. Meunier, J. Hazard. Mater., 146, 283 (2007). https://doi.org/10.1016/j.jhazmat.2006.12.019
  6. S. H. Hsieh, J. J. Horng and C. K. Tsai, J. Mater. Res., 21, 1269 (2006). https://doi.org/10.1557/jmr.2006.0155
  7. M. I. Panoyotova, Waste Manage., 21, 671 (2001). https://doi.org/10.1016/S0956-053X(00)00115-X
  8. K. Kadirvelu, K. Thamaraiselvi and C. Namasivayam, Chem. Phys. Lett., 350, 412 (2001). https://doi.org/10.1016/S0009-2614(01)01351-3
  9. S. E. Kuh and D. S. Kim, Environ. Technol., 21, 883 (2000). https://doi.org/10.1080/09593330.2000.9618973
  10. Y. J. Park, K. H. Jung and K. K. Park, J. Colloid Interface Sci., 171, 205 (1995). https://doi.org/10.1006/jcis.1995.1168
  11. S.V. Dimitrova and D.R. Mehandgiev, Water Res., 32, 3289 (1998). https://doi.org/10.1016/S0043-1354(98)00119-5
  12. S. Iijima, Nature, 354, 56 (1991). https://doi.org/10.1038/354056a0
  13. R. S. Rouff and D. C. Lorents, Carbon, 33, 925 (1995). https://doi.org/10.1016/0008-6223(95)00021-5
  14. T.W. Ebbesen, H. Z. Lezee, H. Hiura, J.W. Bennett, H. F. Ghsrmi and T. Thio, Nature, 382, 54 (1996). https://doi.org/10.1038/382054a0
  15. M. Terrones, Annu. Rev. Mater. Res., 33. 419 (2003). https://doi.org/10.1146/annurev.matsci.33.012802.100255
  16. Y. H. Li, Y. Q. Zhu, Y. M. Zhao, D. H. Wu, Z.K. Luan, Diam Relat Mater., 15, 90 (2006). https://doi.org/10.1016/j.diamond.2005.07.004
  17. C. Changlun, J. Hu, D. Xn, X. Tan, Y. Meng and X. Wang, J. Colloid Interface Sci., 323, 33 (2008). https://doi.org/10.1016/j.jcis.2008.04.046
  18. N.M. Mubarak, M. Ruthiraan, J. N. Sahu, E. C. Abdullah, N. S. Jayakumar, N. R. Sajuni and J. Tan, Inter. J. Nanosci., 12(6), 1350044 (2013). https://doi.org/10.1142/S0219581X13500440
  19. N. M. Mubarak, R. F. Alicia, E. C. Abdullah, J. N. Sahu, A.B. Ayu Haslija and J. Tan, J. Environ. Chem. Eng., 1, 486 (2013). https://doi.org/10.1016/j.jece.2013.06.011
  20. C. H. Wu, J. Colloid Interface Sci., 311, 338 (2007). https://doi.org/10.1016/j.jcis.2007.02.077
  21. V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis and C. Galiotis, Carbon, 46, 833 (2008). https://doi.org/10.1016/j.carbon.2008.02.012
  22. N. M. Mubarak, F. Yusof and M. F. Alkhatib, Chem. Eng. J., 168, 461 (2011). https://doi.org/10.1016/j.cej.2011.01.045
  23. K. Balasubramanian and M. Burghard, Small, 1, 180 (2005). https://doi.org/10.1002/smll.200400118
  24. M.M. Oye, S. Yim, A. Fu, K. Schwanfelder, M. Meyyapan and C. V. Nguyen, J. Nanosci. Nanotechnol., 10, 4082 (2010). https://doi.org/10.1166/jnn.2010.1991
  25. S. Yang, J. Li, D. Hu and X. Wang, J. Hazard. Mater., 166, 109 (2009). https://doi.org/10.1016/j.jhazmat.2008.11.003
  26. K. Laszlo, P. Podkoscielny and A. Dabrowski, Appl. Surf. Sci., 252, 5752 (2006). https://doi.org/10.1016/j.apsusc.2005.07.027
  27. S. J. Wang, W. X. Hu, D.W. Liao, C. F. Ng and C. Au, Catal. Today, 93, 711 (2005).
  28. Y. Li, F. Liu, B. Xia, Q. Du, P. Zhang, D. Wang, Z. Wang and Y. Xia, J. Hazard. Mater., 177, 876 (2010). https://doi.org/10.1016/j.jhazmat.2009.12.114
  29. J. Zhang, H. L. Zou, Q. Qing, Y. L. Yang, Q.W. Li, Z. F. Liu, X.Y. Guo and Z. L. Du, J. Phys. Chem. B., 107, 3712 (2003). https://doi.org/10.1021/jp027500u
  30. A.E. Agboola, R.W. Pike, T.A. Hertwig and H. H. Lou, Clean Technol. Environ. Policy, 9, 289 (2007). https://doi.org/10.1007/s10098-006-0083-2
  31. L. H. Yan, D. Zechao, D. Jun, W. Dehai, L. Zhaokun and Z. Yanqiu, Water Res., 39, 605 (2005). https://doi.org/10.1016/j.watres.2004.11.004

Cited by

  1. Adsorption of Ammonia on Municipal Solid Waste Incinerator Bottom Ash Under the Landfill Circumstance vol.53, pp.4, 2014, https://doi.org/10.9713/kcer.2015.53.4.503
  2. Carbon nanotubes and graphenes as adsorbents for adsorption of lead ions from water: a review vol.64, pp.6, 2015, https://doi.org/10.2166/aqua.2015.102
  3. Rapid adsorption of toxic Pb(II) ions from aqueous solution using multiwall carbon nanotubes synthesized by microwave chemical vapor deposition technique vol.45, pp.None, 2014, https://doi.org/10.1016/j.jes.2015.12.025
  4. Comparative Kinetic Study of Removal of Pb2+ Ions and Cr3+ Ions from Waste Water using Carbon Nanotubes Produced using Microwave Heating vol.2, pp.1, 2014, https://doi.org/10.3390/c2010007
  5. Synthesis of Silicon Carbide-Derived Carbon as an Electrode of a Microbial Fuel Cell and an Adsorbent of Aqueous Cr(VI) vol.56, pp.5, 2014, https://doi.org/10.1021/acs.iecr.6b03832
  6. Heavy metal removal from wastewater using various adsorbents: a review vol.7, pp.4, 2017, https://doi.org/10.2166/wrd.2016.104
  7. Carbon nanotubes, graphene, and their derivatives for heavy metal removal vol.1, pp.1, 2014, https://doi.org/10.1007/s42114-017-0004-3
  8. Adsorptive Removal of Methylene Blue Using Magnetic Biochar Derived from Agricultural Waste Biomass: Equilibrium, Isotherm, Kinetic Study vol.17, pp.5, 2014, https://doi.org/10.1142/s0219581x18500023
  9. Multiwall carbon nanotube promising route for removal of chromium from wastewater via batch column mechanism vol.495, pp.None, 2014, https://doi.org/10.1088/1757-899x/495/1/012061
  10. Magnetite Functionalized Nigella Sativa Seeds for the Uptake of Chromium(VI) and Lead(II) Ions from Synthetic Wastewater vol.2021, pp.None, 2014, https://doi.org/10.1155/2021/6655227
  11. Synthesis of Polyaniline Coating on the Modified Fiber Ball and Application for Cr(VI) Removal vol.16, pp.1, 2021, https://doi.org/10.1186/s11671-021-03509-y
  12. Heavy metal removal by biomass-derived carbon nanotubes as a greener environmental remediation: A comprehensive review vol.287, pp.p1, 2014, https://doi.org/10.1016/j.chemosphere.2021.131959