DOI QR코드

DOI QR Code

Comparative removal of two textile dyes from aqueous solution by adsorption onto marine-source waste shell : Kinetic and isotherm studies

  • Shirzad-Siboni, Mehdi (Department of Environmental Health Engineering, School of Health, Guilan University of Medical Sciences) ;
  • Khataee, Alireza (Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz) ;
  • Vafaei, Fatemeh (Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz) ;
  • Joo, Sang Woo (School of Mechanical Engineering, Yeungnam University)
  • Received : 2013.12.27
  • Accepted : 2014.03.18
  • Published : 2014.08.01

Abstract

Scallop shell was used as a low-cost adsorbent for removal of two anionic textile dyes, Reactive Blue 19 (RB19) and Acid Cyanine 5 R (AC5R), from aqueous solutions. The adsorbent was characterized using inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The dye removal efficiency of scallop shell was determined as function of contact time, solution pH, initial dye concentration and adsorbent dosage. With increasing dye concentration, the adsorption of both dyes decreased, while it increased with increasing adsorbent dosage. Optimum removal of RB19 and AC5R was achieved at pH=6. Adsorption equilibrium data were well described by the Freundlich model. The maximum dye adsorption capacity of scallop shell as estimated from the Langmuir isotherm was 12.36 and 12.47 mg/g for RB19 and AC5R, respectively. The adsorption kinetic data showed excellent correlation with the pseudosecond-order model. It was concluded that scallop shell has a remarkable potential for the sorption of RB19 and AC5R and can be used for treatment of the dye contaminated wastewater.

Keywords

References

  1. A. R. Khataee, V. Vatanpour and A. R. Amani Ghadim, J. Hazard. Mater., 161, 1225 (2009). https://doi.org/10.1016/j.jhazmat.2008.04.075
  2. S. Chakraborty, S. Chowdhury and P. Das Saha, Carbohydr. Polym., 86, 1533 (2011). https://doi.org/10.1016/j.carbpol.2011.06.058
  3. S. Chakraborty, S. Chowdhury and P. Saha, Korean J. Chem. Eng., 29, 1567 (2012). https://doi.org/10.1007/s11814-012-0049-5
  4. A.R. Khataee, F. Vafaei and M. Jannatkhah, Int. Biodeterior. Biodegrad., 83, 33 (2013). https://doi.org/10.1016/j.ibiod.2013.04.004
  5. S. Chakraborty, S. De, S. DasGupta and J. K. Basu, Chemosphere., 58, 1079 (2005). https://doi.org/10.1016/j.chemosphere.2004.09.066
  6. S. Chowdhury, S. Chakraborty and P. Saha, Colloids Surf.. B., 84, 520 (2011). https://doi.org/10.1016/j.colsurfb.2011.02.009
  7. S. Yang, X. Yang, X. Shao, R. Niu and L. Wang, J. Hazard. Mater., 186, 659 (2011). https://doi.org/10.1016/j.jhazmat.2010.11.057
  8. P. Mehta, R. Mehta, M. Suranaa and B.V. Kabrab, J. Curr. Chem. Pharma. Sci., 1, 28 (2011).
  9. S. Song, J. Yao, Z. He, J. Qiu and J. Chen, J. Hazard. Mater., 152, 204 (2008). https://doi.org/10.1016/j.jhazmat.2007.06.104
  10. S. K. Nataraj, K. M. Hosamani and T.M. Aminabhavi, Desalination., 249, 12 (2009). https://doi.org/10.1016/j.desal.2009.06.008
  11. J. Wu, M. Eitemand and S. Law, J. Environ. Eng., 124, 272 (1998). https://doi.org/10.1061/(ASCE)0733-9372(1998)124:3(272)
  12. M.-X. Zhu, L. Lee, H.-H. Wang and Z. Wang, J. Hazard. Mater., 149, 735 (2007). https://doi.org/10.1016/j.jhazmat.2007.04.037
  13. B. O'Regan and D. T. Schwartz, Chem. Mater., 7, 1349 (1995). https://doi.org/10.1021/cm00055a012
  14. I. A. Sengila and M. Ozacarb, J. Hazard. Mater., 161, 1369 (2009). https://doi.org/10.1016/j.jhazmat.2008.04.100
  15. M. Shirzad-Siboni, M. Samarghandi, J.-K. Yang and S.-M. Lee, J. Adv. Oxid. Technol., 14, 302 (2011).
  16. N. Daneshvar, M.H. Rasoulifard, A. R. Khataee and F. Hosseinzadeh, J. Hazard. Mater., 143, 95 (2007). https://doi.org/10.1016/j.jhazmat.2006.08.072
  17. N. Daneshvar, D. Salari and A. R. Khataee, J. Photochem. Photobiol., A., 157, 111 (2003).
  18. S. Raghu and C. Ahmed Basha, J. Hazard. Mater., 149, 324 (2007). https://doi.org/10.1016/j.jhazmat.2007.03.087
  19. P. D. Saha, S. Chowdhury, M. Mondal and K. Sinha, Sep. Sci. Technol., 47, 112 (2011).
  20. Z. Eren and F. N. Acar, Desalination, 194, 1 (2006). https://doi.org/10.1016/j.desal.2005.10.022
  21. V. K. Garg, R. Gupta, A. Bala Yadav and R. Kumar, Bioresour. Technol., 89, 121 (2003). https://doi.org/10.1016/S0960-8524(03)00058-0
  22. P. K. Malik, J. Hazard. Mater., 113, 81 (2004). https://doi.org/10.1016/j.jhazmat.2004.05.022
  23. F. Ferrero, J. Hazard. Mater., 142, 144 (2007). https://doi.org/10.1016/j.jhazmat.2006.07.072
  24. O. Mahmut and S. I. Ayhan, Process Biochem., 40, 565 (2005). https://doi.org/10.1016/j.procbio.2004.01.032
  25. P. Nigam, G. Armour, I.M. Banat, D. Singh and R. Marchant, Bioresour. Technol., 72, 219 (2000). https://doi.org/10.1016/S0960-8524(99)00123-6
  26. S. Wang, Y. Boyjoo, A. Choueib and Z. H. Zhu, Water Res., 39, 129 (2005). https://doi.org/10.1016/j.watres.2004.09.011
  27. G.M. Walker, L. Hansen, J. A. Hanna and S. J. Allen, Water Res., 37, 2081 (2003). https://doi.org/10.1016/S0043-1354(02)00540-7
  28. Z. Eren and F. N. Acar, J. Hazard. Mater., 143, 226 (2007). https://doi.org/10.1016/j.jhazmat.2006.09.017
  29. Z. Qiu-yue, Y. Ping, W. Yan and J. Lei, Technol. Develop. Chem. Ind., 06 (2010).
  30. M. Shirzad-Siboni, A. Khataee and S.W. Joo, J. Ind. Eng. Chem. 20 (2014).
  31. S. H. Yeom and K.-Y. Jung, J. Ind. Eng. Chem., 15, 40 (2009). https://doi.org/10.1016/j.jiec.2008.08.014
  32. N. Daneshvar, D. Salari, A. Niaei, M.H. Rasoulifard and A.R. Khataee, J. Environ. Sci. Heal. A., 40, 1605 (2005). https://doi.org/10.1081/ESE-200060664
  33. APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater, 20th Ed., American Public Health Association, American Water Works Association, and Water Environment Federation, Washington, DC, USA (2000).
  34. S. Gupta and B. V. Babu, Chem. Eng. J., 150, 352 (2009). https://doi.org/10.1016/j.cej.2009.01.013
  35. S. Azizian, J. Colloid Interface Sci., 276, 47 (2004). https://doi.org/10.1016/j.jcis.2004.03.048
  36. M.R. Samarghandi, S. Azizian, M. Shirzad-Siboni, S. J. Jafari and S. Rahimi, Iran. J. Environ. Heal. Sci. Eng., 8, 181 (2011).
  37. M. Ghaedi, J. Tashkhourian, A. Pebdani, B. Sadeghian and F. Ana, Korean J. Chem. Eng., 28, 2255 (2011). https://doi.org/10.1007/s11814-011-0142-1
  38. M. Shirzad-Siboni, M. R. Samarghandi, S. Azizian, W.G. Kim and S. M. Lee, Environ. Eng. Res., 16, 1 (2011). https://doi.org/10.4491/eer.2011.16.1.001
  39. M. Mohamed, S. Yusup and S. Maitra, J. Eng. Sci. Technol., 7, 1 (2012).
  40. S. Castilho, A. Kiennemann, M. F. Costa Pereira and A. P. Soares Dias, Chem. Eng. J., 226, 146 (2013). https://doi.org/10.1016/j.cej.2013.04.017
  41. G.V. Kumar, P. Ramalingam, M. Kim, C. Yoo and M. D. Kumar, Korean J. Chem. Eng., 27, 1469 (2010). https://doi.org/10.1007/s11814-010-0226-3
  42. P. Kumar, S. Ramalingam and K. Sathishkumar, Korean J. Chem. Eng., 28, 149 (2011). https://doi.org/10.1007/s11814-010-0342-0
  43. E. Daneshvar, M. Kousha, M. S. Sohrabi, A. Khataee and A. Converti, Chem. Eng. J., 195-196, 297 (2012). https://doi.org/10.1016/j.cej.2012.04.074
  44. N. R. Bishnoi, R. Kumar, S. Kumar and S. Rani, J. Hazard. Mater., 145, 142 (2007). https://doi.org/10.1016/j.jhazmat.2006.10.093
  45. M. Mondal, R. Singh, A. Kumar and B. Prasad, Korean J. Chem. Eng., 28, 1386 (2011). https://doi.org/10.1007/s11814-010-0523-x
  46. B. K. Nandi, A. Goswami and M. K. Purkait, Appl. Calay. Sci., 42, 583 (2009). https://doi.org/10.1016/j.clay.2008.03.015
  47. W. S. Wan Ngah, L. C. Teong and M. A. K. M. Hanafiah, Carbohydr. Polym., 83, 1446 (2011). https://doi.org/10.1016/j.carbpol.2010.11.004
  48. S. Chatterjee, S. Chatterjee, B. P. Chatterjee and A. K. Guha, Colloids Surf. A., 299, 146 (2007). https://doi.org/10.1016/j.colsurfa.2006.11.036
  49. J. Barron-Zambrano, A. Szygula, M. Ruiz, A.M. Sastre and E. Guibal, J. Environ. Manage., 91, 2669 (2010). https://doi.org/10.1016/j.jenvman.2010.07.033
  50. K. Bellir, I. S. Bouziane, Z. Boutamine, M. B. Lehocine and A. H. Meniai, Energy Procedia., 18, 924 (2012). https://doi.org/10.1016/j.egypro.2012.05.107
  51. M. Kousha, E. Daneshvar, A. R. Esmaeli, M. Jokar and A.R. Khataee, Int. Biodeterior. Biodegrad., 69, 97 (2012). https://doi.org/10.1016/j.ibiod.2012.01.007
  52. L. Wang, J. Zhang, R. Zhao, C. Li, Y. Li and C. Zhang, Desalination., 254, 68 (2010). https://doi.org/10.1016/j.desal.2009.12.012
  53. M. Toor and B. Jin, Chem. Eng. J., 187, 79 (2012). https://doi.org/10.1016/j.cej.2012.01.089
  54. O. Tunc, H. Tanaci and Z. Aksu, J. Hazard. Mater., 163, 187 (2009). https://doi.org/10.1016/j.jhazmat.2008.06.078
  55. L. Li, S. Liu and T. Zhu, J. Environ. Sci., 22, 1273 (2010). https://doi.org/10.1016/S1001-0742(09)60250-3
  56. O. Gok, A. S. Ozcan and A. Ozcan, Appl. Surf. Sci., 256, 5439 (2010). https://doi.org/10.1016/j.apsusc.2009.12.134
  57. Y. Xue, H. Hou and S. Zhu, Chem. Eng. J., 147, 272 (2009). https://doi.org/10.1016/j.cej.2008.07.017
  58. V. K. Gupta, B. Gupta, A. Rastogi, S. Agarwal and A. Nayak, J. Hazard. Mater., 186, 891 (2011). https://doi.org/10.1016/j.jhazmat.2010.11.091

Cited by

  1. Application of ZnO-Fe3O4 Nanocomposite on the Removal of Azo Dye from Aqueous Solutions: Kinetics and Equilibrium Studies vol.225, pp.9, 2014, https://doi.org/10.1007/s11270-014-2113-8
  2. Application of Scallop shell-Fe3O4 Nano-Composite for the Removal Azo Dye from Aqueous Solutions vol.226, pp.9, 2015, https://doi.org/10.1007/s11270-015-2539-7
  3. Adsorption of Ammonia on Municipal Solid Waste Incinerator Bottom Ash Under the Landfill Circumstance vol.53, pp.4, 2014, https://doi.org/10.9713/kcer.2015.53.4.503
  4. Application of C14/SiO2-Fe3O4 and AC-Fe3O4 nanocomposite for U(VI) removal vol.57, pp.47, 2014, https://doi.org/10.1080/19443994.2015.1129509
  5. Oxidase-Peroxidase sequential polymerization for removal of a dye from contaminated water by horseradish peroxidase (HRP)/glucose oxidase (GOx)/polyurethane hybrid catalyst vol.34, pp.11, 2017, https://doi.org/10.1007/s11814-017-0183-1
  6. Application of Scallop shell-Fe3O4 nanoparticles for the removal of Cr(VI) from aqueous solutions vol.75, pp.10, 2017, https://doi.org/10.2166/wst.2017.120
  7. Synthesis of mesoporous triple-metal nanosorbent from layered double hydroxide as an efficient new sorbent for removal of dye from water and wastewater vol.159, pp.None, 2014, https://doi.org/10.1016/j.ecoenv.2018.05.015
  8. Enhanced photocatalytic activity of Fe3O4-WO3-APTES for azo dye removal from aqueous solutions in the presence of visible irradiation vol.37, pp.3, 2019, https://doi.org/10.1080/02726351.2017.1376363
  9. Experimental and Kinetic studies on the combined influence of ultrasonication and rare earths on removal of azo dyes vol.54, pp.10, 2014, https://doi.org/10.1080/01496395.2018.1549571
  10. Experimental and Kinetic studies on the combined influence of ultrasonication and rare earths on removal of azo dyes vol.54, pp.10, 2014, https://doi.org/10.1080/01496395.2018.1549571
  11. Preparation of magnetic conjugated microporous polymers for highly efficient removal of dye from water vol.94, pp.10, 2019, https://doi.org/10.1002/jctb.6144
  12. Utilization of paper mill sludge for removal of cationic textile dyes from aqueous solutions vol.54, pp.16, 2014, https://doi.org/10.1080/01496395.2018.1552295
  13. New Smart Magnetic Ionic Liquid Nanocomposites Based on Chemically Bonded Imidazole Silica for Water Treatment vol.4, pp.25, 2019, https://doi.org/10.1021/acsomega.9b02820
  14. Application of ZnO nanorods doped with Cu for enhanced sonocatalytic removal of Cr(VI) from aqueous solutions vol.27, pp.3, 2020, https://doi.org/10.1007/s11356-019-07165-9
  15. Synthesis and application of nanocomposite Fe3O4@SiO2@CTAB-SiO2 as a novel adsorbent for removal of cyclophosphamide from water samples vol.55, pp.3, 2014, https://doi.org/10.1080/01496395.2019.1566262
  16. Performance of EDTA modified magnetic ZnFe2O4 during photocatalytic reduction of Cr(VI) in aqueous solution under UV irradiation vol.56, pp.1, 2014, https://doi.org/10.1080/10934529.2020.1835389
  17. Fe3O4@ABDA nanocomposite as a new adsorbent effective removal of methylene blue dye: isotherm, kinetic, and thermodynamic study vol.56, pp.3, 2014, https://doi.org/10.1080/01496395.2020.1722169
  18. Synthesis of 2D and 3D hierarchical β-FeOOH nanoparticles consisted of ultrathin nanowires for efficient hexavalent chromium removal vol.543, pp.None, 2021, https://doi.org/10.1016/j.apsusc.2020.148823
  19. Photocatalytic reduction of Cr(VI) from aqueous solution by visible light/CuO-Kaolin: Optimization and modeling of key parameters using central composite design (CCD) vol.56, pp.7, 2021, https://doi.org/10.1080/01496395.2020.1757714