DOI QR코드

DOI QR Code

Glycoalkaloids Content influenced by Tuber Parts and Storage Period in Major Potato Cultivars of Korea

감자 주요 품종의 괴경 부위, 저장기간별 글리코알칼로이드(glycoalkaloid) 함량

  • Kim, Yul-Ho (Highland Agriculture Research Center, National Institute of Crop Science, RDA) ;
  • Kim, Guem Hee (Highland Agriculture Research Center, National Institute of Crop Science, RDA) ;
  • Ji, Hye Rim (Highland Agriculture Research Center, National Institute of Crop Science, RDA) ;
  • Lee, Yu-Young (National Institute of Crop Science, RDA) ;
  • Park, Hyang-Mi (National Institute of Crop Science, RDA) ;
  • Kwon, Oh-Keun (National Institute of Horticultural & Herbal Science, RDA) ;
  • Kim, Su Jeong (Highland Agriculture Research Center, National Institute of Crop Science, RDA) ;
  • Sohn, Whang-Bae (Highland Agriculture Research Center, National Institute of Crop Science, RDA) ;
  • Jin, Yong-Ik (Highland Agriculture Research Center, National Institute of Crop Science, RDA) ;
  • Hong, Su-Young (Highland Agriculture Research Center, National Institute of Crop Science, RDA) ;
  • Nam, Jeong-Hwan (Highland Agriculture Research Center, National Institute of Crop Science, RDA) ;
  • Kweon, Kibum (Highland Agriculture Research Center, National Institute of Crop Science, RDA) ;
  • Suh, Jong-Taek (Highland Agriculture Research Center, National Institute of Crop Science, RDA) ;
  • Jeong, Jin-Cheol (Highland Agriculture Research Center, National Institute of Crop Science, RDA)
  • 김율호 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 김금희 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 지혜림 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 이유영 (농촌진흥청 국립식량과학원) ;
  • 박향미 (농촌진흥청 국립식량과학원) ;
  • 권오근 (농촌진흥청 국립원예특작과학원) ;
  • 김수정 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 손황배 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 진용익 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 홍수영 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 남정환 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 권기범 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 서종택 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 정진철 (농촌진흥청 국립식량과학원 고령지농업연구센터)
  • Received : 2014.07.18
  • Accepted : 2014.08.15
  • Published : 2014.09.30

Abstract

Potato glycoalkaloids (PGAs) are potentially toxic to humans at high levels, and current safety regulations have recommended that PGAs content in tubers of potato cultivars should not exceed 20 mg/100gFW. Accordingly, it is important to determine the PGAs composition and level on potato cultivars for food safety and the breeding for new cultivars with low levels of PGAs. The main aim of this study was to evaluate ${\alpha}$-chaconine, ${\alpha}$-solanine, and total PGAs content in the peel and cortex portions in four recent cultivars ('Haryoung', 'Goun', 'Hongyoung' and 'Jayoung'), released by Highland Agriculture Research Center, together with 'Superior' and 'Atlantic'. The total PGAs ranged from 16.5 to 47.7 mg/100gFW. The ${\alpha}$-solanine/${\alpha}$-chaconine ratio was 1:3.2 ('Jayoung'), 1:3.5 ('Hongyoung') and 1:2 ('Superior'), whereas ${\alpha}$-solanine was not detected in 'Goun', 'Atlantic' and 'Hongyoung' under the analytical condition of this experiment. 75-94% of total PGAs was existed in the peel part of all cultivars. We selected two cultivars ('Atlantic' and 'Goun') showing lower PGAs content in the cortex part. During storage at $4^{\circ}C$, total PGAs content fluctuated widely in early stage of storage and stabilized gradually over time in 'Hongyoung', 'Superior' and 'Jayoung'. Thus, through the selection of cultivars and storage conditions, these results will provide consumers and breeders with fundamental information about the content of PGAs in Korea major cultivars.

PGA 함량 정보가 없는 유전자원을 활용한 다양한 용도의 감자 품종 개발은 괴경 내 PGA 함량을 높이는 비의도적 결과를 초래할 가능성이 있다. 이러한 배경에서 신품종에 대한 정밀한 PGA 함량 분석은 감자의 식품안전성 제고와 PGA 저함유 품종 개발을 위한 교배 모부본 확보차원에서 중요하다. 본 연구에서는 도입품종인 대서, 수미와 최근 개발된 하령, 고운, 홍영, 자영 4품종을 대상으로 괴경 부위, 저장기간별 PGA 함량변화를 분석하였다. 그 연구 결과를 요약하면 다음과 같다. 1. 총 PGA 함량(mg/100gFW)은 수미(47.7), 하령(46.2), 자영(45.7), 홍영(21.2), 대서(19.7), 고운(16.5) 순으로 많았다. 2. ${\alpha}$-solanine/${\alpha}$-chaconine 비율은 1:3.2(자영), 1:3.5(하령), 1:2(수미)이였으며, PGA 함량이 낮은 고운, 대서, 홍영 3품종에서는 모두 본 실험의 기기분석 조건 하에서는 ${\alpha}$-solanine이 검출되지 않았다 3. 공시품종의 껍질부위 PGA 함량은 전체 함량의 75-94% 분포를 보였으며, 이중에서 대서는 PGA 함량이 껍질(94%)에서 높고 육질 부위의 함량(1.2 mg)이 낮아 PGA 독성으로부터 가장 안전한 품종인 것으로 평가되었다. 4. 고운, 대서, 홍영 등 PGA 함량이 낮은 품종들은 저장기간 동안 PGA 함량의 변화가 거의 없었으나 하령, 수미, 자영 등 PGA 함량이 높은 품종들은 저장기간 동안 심한 변동을 보였다.

Keywords

Acknowledgement

Grant : 식용감자 glycoalkaloid의 괴경 내 축적관련 요인 분석

Supported by : 농촌진흥청

References

  1. Austin S, Lojkowska E, Ehlenfeldt MK, Kelman A, Helgeson JP. 1988. Fertile interspecific somatic hybrids of Solanum: a novel source of resistance to Erwinia soft rot. Phytopathology 78: 1216-1220. https://doi.org/10.1094/Phyto-78-1216
  2. Bejarano L, Mignolet E, Devaux E, Carrasco E, Larondelle Y. 2000. Glycoalkaloids in potato tubers: the effect of variety and drought stress on the ${\alpha}$-solanine and ${\alpha}$-chaconine contents of potatoes. J. Sci. Food Agri. 80: 2096-2100. https://doi.org/10.1002/1097-0010(200011)80:14<2096::AID-JSFA757>3.0.CO;2-6
  3. Cho JH, Park YE, Cho HM, Seo HW, Yi JY, Chen CK, Chae WB, Kim TG, Kim JS, Lee YG, Chang DC, Kim SY, Hong SY. 2013. A new double cropping potato cultivar 'Goun' for potato chip processing with short dormancy. Korean J. Breed. Sci. 45: 262-267. https://doi.org/10.9787/KJBS.2013.45.3.262
  4. Choi D, Bostock RM, Avdiushko S, Hildebrand DF. 1994. Lipid-derived signals that discriminate wound and pathogen-responsive isoprenoid pathways in plants: methyl jasmonate and the fungal elicitor arachidonic acid induce different 3-hydroxy-3-methylglutaryl-coenzyme A reductase genes and antimicrobial isoprenoids in Solanum tuberosum L. Proc. Natl. Acad. Sci. USA. 91: 2329-2333. https://doi.org/10.1073/pnas.91.6.2329
  5. Choi HD, Lee HC, Kim SS, Kim YS, Lim HT, Ryu GH. 2008. Nutrient components and physicochemical properties of new domestic potato cultivars. Korean J. Food Sci. Technol. 40: 382-388.
  6. FAO. 2010. http://faostat.fao.org/.
  7. FAO/WHO. 1999. Summary of evaluations performed by the joint FAO/WHO expert committee on food additives (JECFA). ILSI Press, Washington.
  8. Fewell AM, Roddick JG. 1997. Potato glycoalkaloid impairment of fungal development. Mycol. Res. 101: 597-603. https://doi.org/10.1017/S0953756296002973
  9. Friedman M. 2006. Potato glycoalkaloids and metabolites: Role in the plant and in the diet. J. Agri. Food. Chem. 54: 8655-8681. https://doi.org/10.1021/jf061471t
  10. Friedman M., McDonald G. 1997. Potato glycoalkaloids: Chemistry, analysis, safety and plant physiology. Crit. Rev. Plant Sci. 16: 55-132. https://doi.org/10.1080/07352689709701946
  11. Friedman M., Dao L. 1992. Distribution of glycoalkaloids in potato plants and commercial potato products. J. Agric Food Chem. 40: 419-423. https://doi.org/10.1021/jf00015a011
  12. Friedman M, Roitman JN, Kozukue N. 2003. Glycoalkaloid and calystegine contents of eight potato cultivars. J. Agric. Food. Chem. 51: 2964-2973. https://doi.org/10.1021/jf021146f
  13. Grunenfelder LA, Knowles LO, Hiller LK, Knowles NR. 2006. Glycoalkaloid development during greening of fresh market potatoes (Solanum tuberosum L.). J. Agric. Food. Chem. 54: 5847-5854. https://doi.org/10.1021/jf0607359
  14. Keeler RF. 1986. Teratology of steroidal alkaloids. In The Alkaloids. Chemical and Biological Perspectives Pelletier, S.W., Ed.; Wiley: New York. pp.389-425.
  15. Kim JA, Kozukue N, Han JS. 2004. Glycoalkaloid content in Korean cultivated potato plant and tubers by organ, variety, part and weight. J. Korean Home Economic Ass. 42: 187-194.
  16. Kim JA, Kozukue N, Han JS. 2005. The changes of chlorophyll and glycoalkaloid contents in potato tubers after exposure of fluorescent and UV light. J. East Asian Soc. Dietary Life. 15: 207-212.
  17. Machado RMD, Toledo MCF, Garcia LC. 2007. Effect of light and temperature on the formation of glycoalkaloids in potato tubers. Food Control 18: 503-508. https://doi.org/10.1016/j.foodcont.2005.12.008
  18. McCay CM, McCay JB, Smith O. 1987. The nutritive value of potatoes. In: Potato Processing Talburt, W. F. and Smith, O., Eds., AVI, Westport, Connecticut. pp. 287-331.
  19. McMillan M, Thompson JC. 1979. An outbreak of suspected solanine poisoning in schoolboys. Examination of criteria of solanine poisoning. Quat. J. Med. 48: 227-243.
  20. Morris SC, Petermann JB. 1985. Genetic and environmental effects on levels of glycoalkaloids in cultivars of potato (Solanum tuberosum L.). Food Chem. 18: 271-282. https://doi.org/10.1016/0308-8146(85)90108-6
  21. Pehu E, Gibson RW, Jones MGK, Karp A. 1990. Studies on the genetic basis of resistance to potato leaf roll virus, potato virus Y and potato virus X in Solanum brevidens using somatic hybrids of Solanum brevidens and Solanum tuberosum. Plant Sci. 69: 95-101. https://doi.org/10.1016/0168-9452(90)90107-Y
  22. Percival GC, Karim MS, Dixon GR. 1998. Influence of light enhanced glycoalkaloids on resistance of potato tubers to Fusarium sulphureum and Fusarium solani var. coeruleum. Plant Pathol. 47: 665-670. https://doi.org/10.1046/j.1365-3059.1998.00284.x
  23. Rokka VM, Xu YS, Kankila J, Kuusela A, Pulli S, Pehu E. 1994. Identification of somatic hybrids of dihaploid Solanum tuberosum lines and S. brevidens by species specific RAPD patterns and assessment of disease resistance of the hybrids. Euphytica 80: 207. https://doi.org/10.1007/BF00039652
  24. Sanford LL, Deahl KL, Sinden SL, Kobayashi RS. 1995. Glycoalkaloid content in tubers of hybrid and backcross populations from a Solanum tuberosum (X) chacoense cross. Am. Potato. J. 72: 261-271. https://doi.org/10.1007/BF02849280
  25. Sanford LL, Kobayashi RS, Deahl KL, Sinden SL. 1997. Diploid and tetraploid Solanum chacoense genotypes that synthesize leptine glycoalkaloids and deter feeding by Colorado potato beetle. Am. Potato. J. 74: 15-21. https://doi.org/10.1007/BF02849168
  26. Slanina P. 1990. Assessment of health-risks related to glycoalkaloids (solanine) in potatoes: A Nordic view. Report from the Nordic working group on food toxicology and risk assessment. Var Foda 43(Suppl. 1).
  27. Tajner-Czopek A., Jarych-Szyszka M., Lisinska G. 2008. Changes in glycoalkaloids content of potatoes destined for consumption. Food Chemistry 106: 706-711. https://doi.org/10.1016/j.foodchem.2007.06.034