DOI QR코드

DOI QR Code

Analysis of Regional Antecedent Wetness Conditions Using Remotely Sensed Soil Moisture and Point Scale Rainfall Data

위성토양수분과 지점강우량을 이용한 지역 선행습윤조건 분석

  • Sunwoo, Wooyeon (Department of Water Resources, Graduate School of Water Resources, Sungkyunkwan University) ;
  • Kim, Daeun (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Hwang, Seokhwan (Department of Water Resources, Korea Institute of Civil Engineering and Building Technology) ;
  • Choi, Minha (Department of Water Resources, Graduate School of Water Resources, Sungkyunkwan University)
  • 선우우연 (성균관대학교 수자원전문대학원 수자원학과) ;
  • 김다은 (한양대학교 건설환경공학과) ;
  • 황석환 (건설기술연구원 수자원연구실) ;
  • 최민하 (성균관대학교 수자원전문대학원 수자원학과)
  • Received : 2014.09.04
  • Accepted : 2014.10.10
  • Published : 2014.10.31

Abstract

Soil moisture is one of the most important interests in hydrological response and the interaction between the land surface and atmosphere. Estimation of Antecedent Wetness Conditions (AWC) which is soil moisture condition prior to a rainfall in the basin should be considered for rainfall-runoff prediction. In this study, Soil Wetness Index (SWI), Antecedent Precipitation Index ($API_5$), remotely sensed Soil Moisture ($SM_{rs}$), and 5 days ground Soil Moisture ($SM_{g5}$) were selected to estimate the AWC at four study area in the Korean Peninsula. The remotely sensed soil moisture data were taken from the AMSR-E soil moisture archive. The maximum potential retention ($S_{obs}$) was obtained from direct runoff and rainfall using Soil Conservation Service-Curve Number (SCS-CN) method by rainfall data of 2011 for each study area. Results showed the great correlations between the maximum potential retention and SWI with a mean correlation coefficient which is equal to -0.73. The results of time length representing the time scale of soil moisture showed a gap from region to region. It was due to the differences of soil types and the characteristics of study area. Since the remotely sensed soil moisture has been proved as reasonable hydrological variables to predict a wetness in the basin, it should be continuously monitored.

토양수분의 시공간적 변동성은 유역의 수문학적인 반응과 지표 대기간의 상호작용에서 중요한 관심사로 특히, 강우유출 예측 시 유역의 강우사상에서 사전 토양수분 상태 즉, 선행습윤조건(antecedent wetness conditions, AWC)이 고려되어야 한다. 본 연구에서는 선행습윤조건을 알아보기 위한 지표로 토양 습윤지수(SWI), 5일 선행강우지수($API_5$), 위성토양수분($SM_{rs}$), 5일 지점토양수분($SM_{g5}$)을 선정하여 한반도 4개 지점에 대한 선행수분조건을 파악하였다. 토양수분 자료는 AMSR-E로 관측된 자료를 활용하였으며, 이에 따라 각 지역별로 2011년의 강우사상을 선택하여 Soil Conservation Service-Curve Number (SCS-CN)법과 강우량을 활용하여 직접유출고와 최대잠재보유량을 산정하였다. 이를 토양의 습윤상태를 나타내는 4개 지표와의 관계를 살펴본 결과 최대잠재보유량과 SWI가 평균 -0.73의 높은 상관계수를 보였다. 또한 토양수분의 시간적 변동성을 나타내는 time length를 산정한 결과 지역 별로 상이하게 나타났으며 이는 연구지역 및 토양 특성을 반영한 것으로 판단된다. 추후 관측된 토양수분이 지표의 습윤상태를 예측하는데 정량적인 정보를 제공할 수 있으므로 이에 대한 지속적인 모니터링 및 분석이 필요할 것으로 사료된다.

Keywords

References

  1. Aronica, G. and A. Candela, 2004. A regional methodology for deriving flood frequency curves (FFC) in catchments with uncertain knowledge of soil moisture conditions, Proc. of 2004 International Environmental Modelling and Software Society, Osnabruck, Germany, June. 14-17, pp. 1147-1183.
  2. Brocca, L., F. Melone, and T. Moramarco, 2008. On the estimation of antecedent wetness conditions in rainfall-runoff modelling, Hydrological Processes, 22(5): 629-642. https://doi.org/10.1002/hyp.6629
  3. Brocca, L., F. Melone, T. Moramarco, and R. Morbidelli, 2009. Antecedent wetness conditions based on ERS scatterometer data, Journal of Hydrology, 364(1-2): 73-87.
  4. Brocca, L., F. Melone, T. Moramarco, W. Wagner, and S. Hasenauer, 2010. ASCAT Soil Wetness Index validation through in-situ and modeled soil moisture data in Central Italy, Remote Sensing of Environment, 114(11): 2745-2755. https://doi.org/10.1016/j.rse.2010.06.009
  5. Cho, E. and M. Choi, 2014. Regional scale spatiotemporal variability of soil moisture and its relationship with meteorological factors over the Korean peninsula, Journal of Hydrology, 516(4): 317-329. https://doi.org/10.1016/j.jhydrol.2013.12.053
  6. Choi, M., J.M. Jacos, and W.P. Kustas, 2008. Assessment of clear and cloudy sky parameterizations for daily downwelling longwave radiation over different land surfaces in Florida, USA, Geophysical Research Letter, 35: L20402, DOI: 10.1029/2008GL035731.
  7. Choi, M., W.P. Kustas, M.C. Anderson, R.G. Allen, F. Li, and J.H. Kjaersgaard, 2009. An intercomparison of three remote sensing-based surface energy balance algorithms over a corn and soybean production region (IOWA, U.S.) during SMACEX, Agricultural and Forest Meteorology, 149(12): 2082-2097. https://doi.org/10.1016/j.agrformet.2009.07.002
  8. Choi, M. and Y. Hur, 2012. A microwave-optical/infrared disaggregation for improving spatial representation of soil moisture using AMSR-E and MODIS products, Remote Sensing of Environment, 214: 259-269.
  9. Comiso, J., D. Cavalieri, and T. Markus. 2003. Sea ice concentration, ice temperature, and snow depth using AMSR-E data. IEEE Transactions on Geoscience and Remote Sensing, 41(2): 243-252. https://doi.org/10.1109/TGRS.2002.808317
  10. Crow, W.T., R. Bindlish, and T.J. Jackson, 2005. The added value of spaceborne passive microwave soil moisture retrieval for forecasting rainfallrunoff partitioning, Geophysical Research Letters, 32: L18401.
  11. Hur, Y., M. Choi, H. Kim, S. Kim, and J. Ahn, 2011. Analysis of soil moisture response due to Ecohydrological change, Journal of Wetlands Research, 13(2): 171-179 (in Korean with English abstract). https://doi.org/10.17663/JWR.2011.13.2.171
  12. Kim, G., J. Kim, and H. Park, 2009. Soil moisture estimation using climate data and satellite data, Proc. of 2009 Journal of the Korean Society Civil Engineers Symposium, Hoengseong-gun, Gangwon-do, Oct. 22-23, pp. 3439-3442.
  13. Komma, J., G. Bloschl, and C. Reszler, 2008. Soil moisture updating by ensemble Kalman filtering in real-time flood forecasting, Journal of Hydrology, 357(3-4): 228-242. https://doi.org/10.1016/j.jhydrol.2008.05.020
  14. Kostka, Z. and L. Holko, 2003. Analysis of rainfallrunoff events in a mountain catchment, Interdisciplinary Approaches in Small Catchment Hydrology: Monitoring and Research, 67: 19-25.
  15. Matgen, P., F. Fenicial, S. Heitz, D. Plaza, R. de Keyser, V.R.N. Pauwels, W. Wagner, and H. Savenije, 2012. Can ASCAT-derived soil wetness indices reduce predictive uncertainty in well-gauged areas? A comparison with in situ observed soil moisture in an assimilation application, Advances in Water Resources, 44: 49-65. https://doi.org/10.1016/j.advwatres.2012.03.022
  16. Mishra, S.K. and V.P. Singh, 2003. Soil Conservation Service Curve Number (SCS-CN) Methodology, Kluwer Academic Publishers, Dordrecht, Netherlands.
  17. Njoku, E. and L. Li, 1999. Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz, IEEE Transactions on Geoscience and Remote Sensing. 37(1): 79-93. https://doi.org/10.1109/36.739125
  18. Njoku, E.G., T.J. Jackson, V. Lakshmi, T.K. Chan, and S.V. Nghiem, 2003. Soil Moisture Retrieval From AMSR-E, IEEE Transactions on Geoscience and Remote Sensing, 41(2): 215-229. https://doi.org/10.1109/TGRS.2002.808243
  19. Scipal, K., W. Wagner, M. Trommler, and K. Naumann, 2002. The global soil moisture archive 1992-2000 from ERS scatterometer data: First results, Proc. of 2002 IGeoscience and Remote Sensing Symposium, Toronto, Canada, June, 24-28, vol. 3, pp. 1399-1401.
  20. Vischel, T., G. Pegram, S. Sinclari, W. Wagner, and A. Bartsch, 2008. Comparison of soil moisture fields estimated by catchment modelling and remote sensing: a case study in South Africa, Hydrology and Earth System Sciences, 12(3): 2273-2306.
  21. Wagner, W., G. Lemoine, and H. Rott, 1999. A method for estimating soil moisture from ERS scatterometer and soil data, Remote Sensing of Environment, 70(2): 191-207. https://doi.org/10.1016/S0034-4257(99)00036-X
  22. Wagner, W., V. Naeimi, K. Scipa, R. Jeu, and J. Marinez-Fernandez, 2007. Soil moisture from operational meteorological satellites, Hydrogeology Journal, 15(1): 121-131. https://doi.org/10.1007/s10040-006-0104-6
  23. Wagner, W., S. Hahn, R. Kidd, M. Melzer, Z. Bartalis, S. Hasenauer, J. Figa-Saldan, P. Rosnay, A. Jann, S. Schneider, J. Komma, G. Kubu, K. Brugger, C. Aubrecht, J. Zuger, U. Gangkofner, S. Kienberger, L. Brocca1, Y. Wang, G. Bloschl, J. Eitzinger, K. Steinnocher, P. Zeil, and F. Rubel, 2013. The ASCAT soil moisture product: a review of its specifications, validation results, and emerging applications, Meteorologische Zeitschrift, 22(1): 5-33. https://doi.org/10.1127/0941-2948/2013/0399
  24. Rural Development Administration: www.weather.rda.go.kr
  25. AMSR-E: www.geoservices.falw.vu.nl
  26. Water Management Information System: www.wamis.go.kr

Cited by

  1. Bias Correction of AMSR2 Soil Moisture Data Using Ground Observations vol.57, pp.4, 2015, https://doi.org/10.5389/KSAE.2015.57.4.061
  2. MODIS 이미지를 이용한 지표특성에 따른 토양수분의 시·공간적 분포 특성 vol.59, pp.6, 2017, https://doi.org/10.5389/ksae.2017.59.6.029