DOI QR코드

DOI QR Code

Application of Liriope platyphylla, Ornamental Korean Native Plants, for Contaminated Soils in Urban Areas

도시 내 중금속 오염지의 관상식물로서 자생 맥문동(Liriope platyphylla)의 적용성 평가

  • 주진희 (건국대학교 녹색기술융합학과) ;
  • 윤용한 (건국대학교 녹색기술융합학과)
  • Received : 2014.09.04
  • Accepted : 2014.10.13
  • Published : 2014.10.31

Abstract

Heavy metal pollution is a widespread global problem causing serious environmental concern. Heavy metals such as Cd, Pb, and Zn can induce toxicity in all organisms if the soil levels of contaminants reach critical values. The aim of the present study was to examine the application of Liriope platyphylla, an ornamental Korean native plant with great potential for contaminated soil in urban areas, to determine tolerance for Cd, Pb, and Zn. Plants were grown in amended artificial soil with Cd, Pb, and Zn at 0, 100, 250, and $500mg{\cdot}kg^{-1}$ for 7 months. The length of leaf, width of leaf, total leaf number, dead leaf number, new leaf number, chlorophyll contents, and ornamental value were monitored from May to August, during growth the period. The relative leaf length and leaf width displayed rapidly decreasing tendencies with an increasing Cd concentration beginning from 4 months after planting. The same decreasing tendency was observed in total leaf number, new leaf number, chlorophyll contents, and ornamental values showed a trend of Control> $Cd_{100}$ > $Cd_{250}$ > $Cd_{500}$. In Pb concentration treatments, the relative leaf length and leaf width were significantly lower in plants grown at $250mg{\cdot}kg^{-1}$ and $500mg{\cdot}kg^{-1}$ as compared to the Control, $100mg{\cdot}kg^{-1}$. The total leaf number, new leaf number, and dead leaf number did not show significant difference among treatments in Control and $Pb_{100}$ but chlorophyll contents and ornamental value decreased with increasing Pb supply concentration treatments. However, in Zn supply treatments, the relative leaf length was higher at $100mg{\cdot}kg^{-1}$ than the Control, $250mg{\cdot}kg^{-1}$, $500mg{\cdot}kg^{-1}$, but the relative leaf width decreased compared to the Control, $Zn_{100}$, $Zn_{250}$, and $Zn_{500}$. The total leaf number, dead leaf number, new leaf number, and ornamental value showed the lowest value in plants grown in $Zn_{500}$ treatment but no significant differences were found among other treatments.

본 연구는 토양 내 중금속(카드뮴, 납, 아연) 처리 농도에 따른 자생 맥문동의 외형적인 생장 변화를 살펴봄으로써, 도시 내 중금속 오염지의 관상효과 증진을 위한 수종탐색 자료로 활용하고자 수행하였다. 중금속은 카드뮴, 납, 아연등 3종류이고, 처리 농도는 Control, 100, 250, $500mg{\cdot}kg^{-1}$ 등 4가지로서, 총 12가지 처리구로 구성하였다. 2009년 3월에 각각의 실험구에 10개씩 3반복으로 각 처리구에 정식하여, 같은 해 9월까지 약 7개월간 온실에서 실험을 실시하였다. 생장이 가장 활발한 시기라 볼 수 있는 5월부터 8월까지 약 3개월 동안 엽장, 엽폭, 총엽수, 고사엽수, 신엽수, 엽록소함량, 관상가치 등을 중심으로 생장 변화를 모니터링하였다. 카드뮴(Cd) 처리구의 경우, 엽장과 엽폭의 상대생장률이 식재 후 4개월이 경과된 시점에서 급속히 감소하였다. 총엽수, 신엽수, 엽록소함량, 관상가치 등의 형태적 항목에서도 Control> $Cd_{100}$ > $Cd_{250}$ > $Cd_{500}$ 순으로 감소하는 경향을 보였다. 납(Pb) 처리구에서 엽장의 상대생장률은 $Pb_{250}$$Pb_{500}$ 처리구에서만 변화율이 감소한 반면, 엽폭은 납 처리 농도가 높을수록 성장률의 감소양상이 뚜렷하였다. 총엽수, 신엽수, 고사엽수등은 대조구와 $Pb_{100}$ 처리구에서 비교적 유사하였으나, 엽록소함량, 관상가치 등은 납 처리 농도가 증가할수록 감소양상이 매우 뚜렷했다. 아연(Zn) 처리구는 카드뮴와 납 처리구와는 달리 식재 후 4개월이 경과된 시점에서도 변화율의 차이가 있을 뿐, 엽장은 꾸준히 증가하는 경향을 보였다. 엽폭 상대성장율 또한 $Zn_{500}$ 처리구를 제외하고, 비교적 완만한 성장세를 보였다. 총엽수, 신엽수, 고사엽수, 관상가치는 $Zn_{500}$ 처리구에서 가장 낮은 값을 나타낸 반면, Control, $Zn_{100}$, $Zn_{250}$ 처리구간에 차이가 뚜렷하지 않았다. 본 연구를 통해, 맥문동의 관상가치적 관점에서 생장 변화를 파악함으로써 향후 현장적용의 기반 연구로서 큰 의미를 갖는다고 하겠다. 하지만, 중금속에 대한 식물의 내성은 중금속 자체의 특이성과 환경조건에 따라 변화할 수 있다는 개연성을 가지므로, 실내연구와 현장적용성 연구가 병행되어야 할 것이다.

Keywords

References

  1. Anthony, G. K., B., Singh and N. P. Bhatia(2006) Heavy metal tolerance in common fern species. Austral. J. Bot. 55(1): 63-73.
  2. Arleta M., P. Aneta, M. Anna, H. Anetta, B. Danuta and T. Barbara (2012) Antioxidative defense system in Pisum sativum roots exposed to heavy metals(Pb, Cu, Cd, Zn). Pol. J. Envrion. Stud. 21(6): 1721-1730.
  3. Caldelas, C., J. Bort and A. Febrero(2012) Ultrastructure and subcellular distribution of Cr in Iris pseudacorus L. using TEM and X-ray microanalysis. Cell Biol. Toxicol. 28: 57-68. https://doi.org/10.1007/s10565-011-9205-7
  4. Choi, S. T., J. E. Kim, I. W. Park and H. G. Ahn(2001) Effects of shading on the growth of variegated liriope (Liriope platyphylla Wang et Tang. forma variegata Hort. Kor. Turfgrass Sci. 15(2): 77-86.
  5. Clijsters, H. and F. Van-Assche(1985) Inhibition of photosynthesis by heavy metals. Photosyn. Res. 7: 31-40. https://doi.org/10.1007/BF00032920
  6. Daniela, I. O., V. Schindler and R. S. Lavado(2012) Heavymetal availability in Pelargonium hortorum rhizosphere: interactions, uptake and plant accumulation. Journal of Plant Nutrition 35: 1374-1386. https://doi.org/10.1080/01904167.2012.684129
  7. Deng, H., Z. H. Ye and M. H. Wong(2006) Lead and zinc accumulation and tolerance in populations of six wetland plants. Environ. Pollut. 141: 69-80. https://doi.org/10.1016/j.envpol.2005.08.015
  8. Dhir, B., P. Sharmila and P. Pardha Saradhi(2008) Photosynthetic performance of Salvinia natas exposed to chromiumand zinc rich wastewater. Bras. J. Plant Physiol. 20: 61-70. https://doi.org/10.1590/S1677-04202008000100007
  9. Gladkova, E.A., O.N. Gladkova and L.S. Glushetskaya(2011) Estimation of heavy metal resistance in the second generation of creeping bent grass (Agrostis solonifera) obtained by cell selection for resistance to these contaminants and the ability of this plant to accumulate heavy metal. Applied Biochemistry and Microbiology 47(8): 776-779. https://doi.org/10.1134/S0003683811080035
  10. Han, Y., H. Yuan, S. Huang, Z. Guo, B. Xia and J. Gu(2007) Cadmium tolerance and accumulation by two species of Iris. Ecotoxicol. 16: 557-563. https://doi.org/10.1007/s10646-007-0162-0
  11. Hong, C. O., Y. G. Kim, S. M. Lee, H. C. Park, K. K. Kim, H. J. Son, J. H. Cho and P. J. Kim(2013) Liming effect on cadmium immobilization and phytoavailability in paddy soil affected by mining activity. Korean J. Environ. Agric. 32(1): 1-8. https://doi.org/10.5338/KJEA.2013.32.1.1
  12. Izabella, F. and B. Agnieszka(2011) The growth and reproductive effort of Betula pendula Roth in a heavy-metals polluted area. Polish J. of Environ. Stud. 20(4): 1097-1101.
  13. Jiang, L. Y., X. E. Yang and J. M. Chen(2008) Copper tolerance and accumulation of Elsholtzia splendens Nakai in a pot environment. Journal of Plant Nurition 31: 1382-1392. https://doi.org/10.1080/01904160802206257
  14. Ju, J. H. and Y. H. Yoon(2014) Characteristics of heavy metal accumulation and removing from soil using Korean native plant, Liriope platyphylla for phytoremediation. Journal of Environmental Sciences International 23(1): 61-68. https://doi.org/10.5322/JESI.2014.23.1.61
  15. Ju, J. H. and Y. H. Yoon(2013) Phytoremediation of soil contaminated with heavy metal by Hosta longipes in urban shade. Journal of Environmental Policy 12(4): 119-132. https://doi.org/10.17330/joep.12.4.201312.119
  16. Kim, K. H. and S. N. Park(2000) Distribution of $NO_3^-$, $SO_4^{2-}$ and heavy metals in some urban-forest soils of central Korea. Korean Journal of Environmental Agriculture 19(4): 351-357.
  17. Kim, H. S., Y. N. Kim, J. W. Kim and K. H. Kim(2011) Properties and heavy metal contents of urban agricultural soils in Seoul. Korean J. Soil Sci. Fert. 44(6):1048-1051. https://doi.org/10.7745/KJSSF.2011.44.6.1048
  18. Lee, P. K., Y. H. Yu, S. T. Yun and S. C. Shin(2003) Spatial variability of heavy metal contamination of urban roadside sediments collected fromgully pots in Seoul city. Journal of Soil and Groundwater Environment 8(2): 19-35.
  19. Lee, S. C. and W. S. Kim(2011) Cadmium accumulation and tolerance of Iris pseudacorus and Acorus calamus as aquatic plants native to Korea. Kor. J. Hort. Sci. Technol. 29(5): 413-419.
  20. Leita, L., M. De Nobili, G. Muhlbachova, C. Mondini, L. Marchiol and G. Zerbi(1995) Bioavalability and effects of heavy metals on soil microbial biomass survival during laboratory incubation. Biol. Fertil. Soil 19: 103. https://doi.org/10.1007/BF00336144
  21. Liu, J., Q. X. Zhou, T. Sun, L. Ma and S. Wang(2008) Growth responses of three ornamental plants to Cd and Cd-Pb stress and their metal accumulation characteristics. Journal of Hazardous Materials 151: 261-267. https://doi.org/10.1016/j.jhazmat.2007.08.016
  22. Ministry of Environment(2007) Soil monitoring system and survey results on 2007. pp. 328.
  23. Nagase, A. and N. Dunnett(2010) Drought tolerance in different vegetation types for extensive green roofs: effects of watering and diversity. Landscape and Urban Planning 97(4): 318-327. https://doi.org/10.1016/j.landurbplan.2010.07.005
  24. Pierzynski, G. M., J. T. Sims, and G. F. Vance(1994) Soils and Environmental Quality. Lewis Publishers, Florida, USA. pp: 47-55.
  25. Prasad, M. N. V. and K. Strzalka(1999) Impact of Heavy Metal on Photosynthesis. Springer, Berlin. pp.177-138.
  26. Samecka, C. A., K. Kolon and A. Kempers(2009) Short shoots of Betula pendula Roth as bioindicators of urban environmental pollution inWroclaw (Poland). Trees 20: 923.
  27. Shelmerdine, A., C. Black, S. McGrath and S. Young(2009) Modelling phytoremediation by the hyperaccumulating fern, Pteris vittata, of soils historically contaminated with arsenic. Environ Pollut. 157: 1589-1596. https://doi.org/10.1016/j.envpol.2008.12.029
  28. Song, J. H., H. Y. Jin and T. H. Ahn(2010) A study on physicochemical properties of artificial substrates and changes of plant growth in tropical plant resources research center of Korea national arboretum. J. Korean Env. Res. Tech. 13(2): 52-62.
  29. Sun, Y., Q. Zhou, Y., Xu, L. Wang and X. Liang(2011) Phytoremediation for co-contaminated soils of benzo [a] pyrene (B [a] P) and heavy metals using ornamental plant Tagetes patula. Journal of Hazardous Materials 186: 2075-2082. https://doi.org/10.1016/j.jhazmat.2010.12.116
  30. US Environmental Protection Agency(2005) Priority pollutants. Code of federal regulations. Title 40: protection of environment, chap I. Appendix A to 40 CFR Part 423. 1st July 2005. Environmental Protection Agency.
  31. Uveges, J. L., A. L., Corbett and T. K., Mal(2002) Effects of lead contamination on the growth of Lythrum salicaria (purple loosestrife). Environ Pollut. 120: 319-323. https://doi.org/10.1016/S0269-7491(02)00144-6
  32. Youko, O., Y. Takayuki, K. Yoshihiro, K. Hiroyuki, K. Fuminori, S. Harumi, M. Satomi, W. Jianzhong, I. Takeshi and M. Takashi(2014) Genome-wide transcriptome analysis reveals that cadmium stress signaling controls the expression of genes in drought stress signal pathways in rice. PLoS ONE. 9(5): 1-13.
  33. Won, J. Y. and C. Y. Lee(2002) Characteristics of photosynthesis and dry matter production of Liriope platyphylla Wang et Tang. Korean J. Medicinal Crop Sci. 10(2): 82-87.