DOI QR코드

DOI QR Code

Preparation of Conductive Silicone Rubber Sheets by Electroless Nickel Plating

무전해 니켈도금에 의한 도전성 실리콘고무 시트의 제조

  • Lee, Byeong Woo (Department of Materials Engineering, Korea Maritime University) ;
  • Lee, Jin Hee (Department of Materials Engineering, Korea Maritime University)
  • 이병우 (한국해양대학교 재료공학과) ;
  • 이진희 (한국해양대학교 재료공학과)
  • Received : 2014.10.07
  • Accepted : 2014.10.21
  • Published : 2014.10.31

Abstract

Electroless plating process as a solution deposition method is a viable means of preparing conductive metal films on non-conducting substrates through chemical reactions. In the present study, the preparation and properties of electroless Ni-plating on flexible silicone rubber are described. The process has been performed using a conventional Ni(P) chemical bath. Additives and complexing agents such as ammonium chloride and glycine were added and the reaction pH was controlled by NaOH aqueous solution. Ni deposition rate and crystallinity have been found to vary with pH and temperature of the plating bath. It was shown that Ni-films having the high crystallinity, enhanced adhesion and optimum electric conductivity were formed uniformly on silicone rubber substrates under pH 7 at $70^{\circ}C$. The conductive Ni-plated silicone rubber showed a high electromagnetic interference shielding effect in the 400 MHz-1 GHz range.

Keywords

References

  1. J. H. Kim, H. W. Kim, S. M., Park, N. E. Lee, J. Korean Phys. Soc., 52 (2008) 318. https://doi.org/10.3938/jkps.52.318
  2. N. C. Das, D. Khastgir, T. K. Chaki, A. Chakraborty, Composites. 31A (2000) 1069.
  3. K. Sasikumar, G. Suresh, K. A. Thomas, R. John, V. Natarajan,T. Mukundav, R. M. R. Vishnubhatla, Bull. Mater. Sci., 29 (2006) 637. https://doi.org/10.1007/s12034-006-0016-z
  4. Y. Yacubowicz, M. Narkis, Polymer Engin. Sci., 30 (1990) 459. https://doi.org/10.1002/pen.760300806
  5. D. Li, K. Goodwin, C. L. Yang, J. Mater. Sci., 43 (2008) 7121. https://doi.org/10.1007/s10853-008-3031-1
  6. G. X. Wang, N. Li, H.L. Hu, Y.C. Yu, Appl. Surf. Sci., 253 (2006) 480. https://doi.org/10.1016/j.apsusc.2005.12.106
  7. D. C. Weng, U. Landau, J. Electrochem. Soc., 142(8) (1995) 2598. https://doi.org/10.1149/1.2050060
  8. Technical report, Roxtec multi-cable transit devices: Applications and design practices, Roxtec, Sweden, (2014).
  9. S. Rosset, M. Niklaus, P. Dubois, H.R. Shea, Adv. Funct. Mater., 19 (2009) 470. https://doi.org/10.1002/adfm.200801218
  10. I. M. Graz, D. P. J. Cotton, S. P. Lacour, Appl. Phys. Lett., 94 (2009) 071902. https://doi.org/10.1063/1.3076103
  11. S. P. Lacour, J. Jones, S. Wagner, T. Li, Z. Suo, Proc. IEEE, 93 (2005) 1459. https://doi.org/10.1109/JPROC.2005.851502
  12. K. G. Keong, W. Sha, S. Malinov, J. Alloys Compd, 334 (2002) 192. https://doi.org/10.1016/S0925-8388(01)01798-4
  13. K. Hagiwara, J. Watanabe, H. Honma, Plating & Surface Finishing, 84(4) (1997) 74.
  14. I. Motizuki, K. Izawa, J. Watanabe, and H. Honma, Trans. IMF, 77 (1999) 41. https://doi.org/10.1080/00202967.1999.11871242
  15. IEEE Std. 299, IEEE Standard Method for Measuring the Effectiveness of Electromagnetic Shielding Enclosure, (1997).

Cited by

  1. Preparation of conductive EPDM rubber sheets by electroless Ni-plating for electromagnetic interference shielding applications vol.25, pp.5, 2015, https://doi.org/10.6111/JKCGCT.2015.25.5.193