DOI QR코드

DOI QR Code

Evaluation of Local Damages and Residual Performance of Blast Damaged RC Beams Strengthened with Steel Fiber and FRP Sheet

폭발 손상을 입은 강섬유 및 FRP 시트 보강 철근콘크리트 보의 국부손상 및 잔류성능 평가

  • Lee, Jin-Young (School of Civil, Environmental & Architectural Engineering, Korea University) ;
  • Jang, Dae-Sung (School of Civil, Environmental & Architectural Engineering, Korea University) ;
  • Kwon, Ki-Yeon (School of Civil, Environmental & Architectural Engineering, Korea University) ;
  • Yoon, Young-Soo (School of Civil, Environmental & Architectural Engineering, Korea University)
  • 이진영 (고려대학교 건축사회환경공학부) ;
  • 장대성 (고려대학교 건축사회환경공학부) ;
  • 권기연 (고려대학교 건축사회환경공학부) ;
  • 윤영수 (고려대학교 건축사회환경공학부)
  • Received : 2014.04.24
  • Accepted : 2014.07.23
  • Published : 2014.10.31

Abstract

In this study, standoff detonation tests and static beam tests on $160{\times}290{\times}2200mm$ RC beams were conducted to investigate the effect of local damage on the flexural strength and ductility index. And also, blast resistance of RC beams strengthened with steel fiber and FRP sheet were evaluated by these tests. The standoff detonation tests were performed with charge weight of 1kg and standoff distance of 0.1m. After the tests, crater diameters and loss weights of specimens were measured to evaluate the local damage of specimens. Flexural strength and ductility index were measured by conducting the static beam tests on the damaged and undamaged specimens. As a test results, normal concrete specimen(NC) showed relatively large crater and spall diameters that caused weight loss of 23.5kg as a local damage. Whereas, steel fiber reinforced concrete specimen(SFRC) and FRP sheet retrofitted specimens(NC-F, NC-FS) showed higher blast resistance than NC by reducing crater size and weight loss. Flexural strength and ductility index were decreased in case of local damaged specimens by detonation. Especially, large decrease of flexural strength was shown in NC as compared with intact specimen and brittle failure was occurred due to buckling of compressive reinforcement. In case of specimens strengthened with steel fiber and FRP sheet, residual flexural strength and ductility index were increased as compared with NC. In these results, it is concluded that critical local damage can be occurred unless enough standoff distance can be assured even if the charge weight is small. and it is verified that strengthening method using steel fiber and FRP sheet can increase blast resistance.

본 연구에서는 폭발에 의한 국부손상이 철근콘크리트 보의 잔류 휨강도 및 연성에 미치는 영향을 알아보기 위하여 $160{\times}290{\times}2200mm$의 철근콘크리트 보에 대하여 근접 폭발 시험과 정하중 휨시험을 수행하였다. 또한 이 시험을 통해 강섬유 및 FRP 시트로 보강한 철근콘크리트 보의 폭발저항성능을 평가하였다. 장약량 1kg, 이격거리 0.1m의 폭발 시험을 수행하였으며, 시험 후 시험체의 crater, spall 지름과 무게손실(weight loss)을 측정하여 시험체의 국부손상을 평가하였다. 또한 폭발하중을 받지 않은 시험체와 폭발하중을 받아 국부손상이 발생한 시험체의 정하중 휨시험을 수행하여 휨강도 및 연성지수를 측정하였다. 시험결과, 보통콘크리트 시험체(NC)는 비교적 큰 crater와 spall이 발생하였으며 국부손상에 의한 무게 손실이 23.5kg 발생하였다. 반면 강섬유보강콘크리트 시험체(SFRC)와 FRP 시트 보강 시험체(NC-F, NC-FS)는 NC에 비해 crater 크기와 무게손실이 감소하며 향상된 폭발저항성능을 나타내었다. 또한 폭발하중에 의해 국부손상이 발생한 시험체들은 휨강도와 연성지수가 감소하였다. 특히 NC는 잔류 휨강도가 기존 강도에 비해 크게 감소하였고 압축철근의 좌굴현상이 나타나며 취성적으로 파괴되었다. 강섬유와 FRP 시트로 보강한 시험체의 경우 잔류 휨강도 및 연성지수가 NC에 비해 증가하였다. 이를 통해 폭발이 발생할 경우, 충분한 이격거리를 확보하지 못하면 장약량이 적더라도 구조부재에 심각한 국부손상을 발생 시킬 수 있다는 것을 알 수 있었으며, 강섬유와 FRP 시트에 의한 보강 방법이 폭발저항성능을 향상시킨다는 것을 확인할 수 있었다.

Keywords

References

  1. Krauthammer, T., Modern Protective Structures, CRC Press, 2008.
  2. Biggs, J. M., Introduction to Structural Dynamics, McGraw-Hill, New York, 1964, pp. 3-26.
  3. Dusenberry, D. O., Handbook for Blast-Resistant Design of Buildings, John Wiley & Sons, 2010.
  4. Schenker, A., Anteby, I., Gal, E., Kivity, Y., Nizri, E., Sadot, O., Michaelis, R., Levintant, O., and Ben-Dor, G., "Full-scale Field Tests of Concrete Slabs subjected to Blast Loads," International Journal of Impact Engineering, Vol. 35, No. 3, 2008, pp. 184-198. https://doi.org/10.1016/j.ijimpeng.2006.12.008
  5. Silva, P. F. and Lu, B., "Improving the Blast Resistance Capacity of RC Slabs with Innovative Composite Materials," Composite Part B: Engineering, Vol. 38, No. 5-6, 2007, pp. 523-534. https://doi.org/10.1016/j.compositesb.2006.06.015
  6. Quintero R., Wei J., Galati N., and Nanni, A., "Failure Modeling of Bridge Components Subjected to Blast Loading Part II: Estimation of the Capacity and Critical Charge," International Journal of Concrete Structures and Materials, Vol. 1, No. 1, 2007, pp. 29-36. https://doi.org/10.4334/IJCSM.2007.1.1.029
  7. Kim, H. J., Nam, J. W., Kim, S. B., Kim, J. H., and Byun, K. J., "Analytical Evaluations of the Retrofit Performances of Concrete Wall Structures Subjected to Blast Load", Journal of the Korea Concrete Institute, Vol. 19, No. 2, 2007, pp. 241-250. https://doi.org/10.4334/JKCI.2007.19.2.241
  8. Ha, J. H., Yi, N. H., Kim, S. B., Choi, J. K., and Kim, J. H., "Experimental Study on Blast Resistance Improvement of RC Panels by FRP Retrofitting", Journal of the Korea Concrete Institute, Vol. 22, No. 1, 2010, pp. 93-102. https://doi.org/10.4334/JKCI.2010.22.1.093
  9. Patterns of Global Terrorism 2003, United States Department State, 2004, pp. 179.
  10. Bank, L. C., Composites for Construction: Structural Design with FRP Materials, John Wiley & Sons, NJ, USA, 2006, pp. 214-271.
  11. Teng, J. G., Chen, J. F., Smith, S. T., and Lam, L., FRP-Strengthened RC Structures, John Wiley & Sons, West Sussex, England, 2002, pp. 31-46.
  12. Wu, C., Oehlers, D. J., Rebentrost, M., Leach, J., and Whittaker, A. S., "Blast Testing of Ultra-high Performance Fibre and FRP-retrofitted Concrete Slabs," Engineering Structures, Vol. 31, No. 9, 2009, pp. 2060-2069. https://doi.org/10.1016/j.engstruct.2009.03.020
  13. Min, K. H., Shin, H. O., Yoo, D. Y., and Yoon, Y. S., "Flexural and Punching Behaviors of Concrete Strengthening with FRP Sheet and Steel fibers under Low-Velocity Impact Loading", Journal of the Korea Concrete Institute, Vol. 23, No. 1, 2011, pp. 31-38. https://doi.org/10.4334/JKCI.2011.23.1.031
  14. Lee, J. Y., Kim, M. H., Min, K. H., Yoon, Y. S., "Analysis of Behaviors of Concrete Strengthened with FRP Sheets and Steel Fibers under Low-Velocity Impact Loading", Journal of the Korea Institute for Structural Maintenance Inspection, vol. 15, No. 4, 2011, pp. 155-164. https://doi.org/10.11112/jksmi.2011.15.4.155
  15. TM5-1300/AFR 88-2/NAVFAC P-39, Structures to Resist the Effects of Accidental Explosions, Joint Departments of the Army, Air Force and Navy Washington, DC, November, 1990, TMCD Version.
  16. Unified Facilities Criterion (UFC 4-010-01), DoD Minimum Antiterrorism Standards for Buildings, Washington, 31 July 2002.
  17. TM5-855-1/AFPAM32-1147/NAVFACP-1080/DAHS CWEMAN-97, Design and Analysis of Hardened Structures to Conventional Weapons Effects, Joint Departments of the Army, Air Force, Navy and the Defense Special Weapons Agency, Washington, DC, December 1997.
  18. Yamaguchi, M., Murakami, K., Takeda, K., and Mitsui, Y., "Blast Resistance of Polyethylene Fiber Reinforced Concrete to Contact Detonation," Journal of Advanced Concrete Technology, Vol. 9, No. 1, 2011, pp. 63-71. https://doi.org/10.3151/jact.9.63
  19. Lonnquist, L., "The Effects of High Explosives in Contact with Reinforced Concrete Plates," Proceedings of the 6th International Symposium Interaction of Nonnuclear Munitions with Structures, Panama City, USA, 1993, pp. 262-266.
  20. Kraus, D., Roetzer, J., and Thoma, K., "Effect of High Explosive Detonations on Concrete Structures," Nuclear Engineering and Design, Vol. 150, No. 2-3, 1994, pp. 309-314. https://doi.org/10.1016/0029-5493(94)90149-X
  21. Wang, Z. L., Konietzky, H., and Huang, R. Y., "Elastic- Plastic-Hydrodynamic Analysis of Crater Blasting in Steel Fiber Reinforced Concrete," Theoretical and Applied Fracture mechanics, Vol. 52, No. 2, 2009, pp. 111-116. https://doi.org/10.1016/j.tafmec.2009.08.005
  22. Saatci, S. and Vecchio F. J., "Effects of Shear Mechanism on Impact Behavior," ACI Structure Journal, Vol. 106, No. 1, 2009, pp. 78-86.
  23. Chen, C. C. and Li, C. Y., "Punching Shear Strength of Reinforced Concrete Slabs Strengthened with Glass Fiber Reinforced Polymer Laminates," ACI Structural Journal, Vol. 102, No. 4, 2005, pp. 535-542.
  24. Yoo, D. Y., Min, K. H., Lee, J. Y., and Yoon, Y. S., "Enhancement of Impact Resistance of Layered Steel Fiber Reinforced High Strength Concrete Beam", Journal of the Korea Concrete Institute, Vol. 24, No. 4, 2012, pp. 369-379. https://doi.org/10.4334/JKCI.2012.24.4.369
  25. Wang, Z. L., Wu, L. P., and Wang, J. G., "A Study of Constitutive Relation and Dynamic Failure for SFRC in Compression," Construction and Building Materials, Vol. 24, No. 8, 2010, pp. 1358-1363. https://doi.org/10.1016/j.conbuildmat.2009.12.038

Cited by

  1. Effect of Blast Local Damage on Flexural Strength of RC Beams and Blast Resistance According to Variation of Shear Rebar Placement vol.15, pp.2, 2015, https://doi.org/10.9798/KOSHAM.2015.15.2.71
  2. Flexural Assessment of Blast-Damaged RC Beams Retrofitted with CFRP Sheet and Steel Fiber vol.2018, pp.1687-9430, 2018, https://doi.org/10.1155/2018/2036436