DOI QR코드

DOI QR Code

Hypoglycemic and antioxidant effects of jaceosidin in streptozotocin-induced diabetic mice

Jaceosidin이 streptozotocin으로 유도된 당뇨 쥐의 혈당강하 및 항산화능에 미치는 영향

  • Park, Eunkyo (Dept. of Home Economics, Graduate School, Chung-Ang University) ;
  • Kwon, Byoung-Mog (Division of Biomedical Convergent, Korea Research Institute of Bioscience & Biotechnology) ;
  • Jung, In-Kyung (Dept. of Physical Education, Chung-Ang University) ;
  • Kim, Jung-Hyun (Dept. of Physical Education, Chung-Ang University)
  • 박은교 (중앙대학교 대학원 가정학과) ;
  • 권병목 (한국생명공학연구원 의과학융합연구본부) ;
  • 정인경 (중앙대학교 체육교육과) ;
  • 김정현 (중앙대학교 체육교육과)
  • Received : 2014.07.24
  • Accepted : 2014.08.27
  • Published : 2014.10.31

Abstract

Purpose: In this study, we investigated the effects of jaceosidin on blood glucose regulation in type 1 diabetic mice. Methods: C57BL/6 mice were divided into four groups; normal control (Normal), diabetes control (D-Control), diabetes low-jaceosidin (D-0.005%), and diabetes high-jaceosidin (D-0.02%). Type 1 diabetes was induced by streptozotocin and mice were then fed a diet containing jaceosidin for eight weeks. Fasting blood glucose, oral glucose tolerance test, insulin tolerance test, lipid peroxidation, and antioxidant enzyme activities were assessed. Results: Jaceosidin supplementation for eight weeks had no effect on body weight, organ weight, and blood lipid profiles. However, jaceosidin supplementation significantly lowered fasting blood glucose level and reduced insulin resistance. We also found that jaceosidin supplementation increased antioxidant capacity by enhancement of catalase and GSH-px activities. Conclusion: These results suggest that jaceosidin could be a therapeutic candidate to ameliorate hyperglycemia through increase of antioxidant enzyme activity.

본 연구는 약쑥의 기능성 성분인 jaceosidin이 제1형 당뇨병에서 혈당과 체내 항산화 상태에 미치는 영향를 조사하고자 실시되었다. jaceosidin을 식이에 농도별(0.005%, 0.02%)로 혼합시켜 준비하였으며, 실험 동물은 C57BL/6J 5주령 수컷 마우스를 사용하여 정상군(Normal)과 당뇨군으로 나눈 뒤 당뇨군의 마우스는 5일간 streptozotocin (55 mg/kg bw)을 복강으로 주사하여 당뇨를 유발하였다. 당뇨군은 당뇨대조군(D-Control), jaceosidin 0.005% 섭취군(D-0.005%), jaceosidin 0.02% 섭취군(D-0.02%)으로 나누어 사육하였다. 8주간의 식이 섭취 결과, 당뇨군의 체중이 Normal과 비교하여 유의적으로 감소되었고, 식이효율은 유의적으로 낮아졌으며, jaceosidin의 섭취는 당뇨로 인한 체중 및 식이효율 저하에 영향을 미치지 않는 것으로 나타났다. 제1형 당뇨시 jaceosidin의 섭취가 장기 무게와 간 기능에 영향을 미치지 않는 것으로 나타났으나, 공복 혈당은 D-0.005%가 D-Control과 비교하여 유의하게 감소하는 것으로 나타났으며, 농도의존적은 경향은 보이지 않았다. 당부하검사에서는 당뇨군이 normal에 비해 혈당과 AUC 값이 유의적으로 높게 나타났으나, jaceosidin 섭취에 의한 차이는 없는 것으로 나타났으며, 인슐린 내성검사 결과에서는 D-0.02%가 당뇨 대조군보다 AUC값이 감소하는 경향을 보였다. Jaceosidin의 섭취가 당뇨병로 인한 산화적 스트레스에 미치는 영향을 측정한 결과, jaceosidin의 섭취가 과산화지질 생성에는 영향을 미치지 않는 것으로 나타났으나, 항산화효소인 GSH-px의활성은 D-Control과 비교하여 유의적으로 증가시켰다. 이상의 결과로 미루어 볼 때, jaceosidin은 제1형 당뇨병시 간의 항산화 효소계를 활성화 시킴으로써 공복혈당을 낮추고, 인슐린민감성을 증가시키는 것으로 생각되는 바 당뇨병이나 당뇨로 인한 합병증 예방 및 치료에 활용될 수 있을 것으로 판단된다.

Keywords

References

  1. Lim S, Lee EJ, Koo BK, Cho SI, Park KS, Jang HC, Kim SY, Lee HK. Increasing trends of metabolic syndrome in Korea-based on Korean National Health and Nutrition Examination Surveys. J Korean Diabetes Assoc 2005; 29(5): 432-439.
  2. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 1998; 15(7): 539-553. https://doi.org/10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S
  3. Pambianco G, Costacou T, Ellis D, Becker DJ, Klein R, Orchard TJ. The 30-year natural history of type 1 diabetes complications: the Pittsburgh Epidemiology of Diabetes Complications Study experience. Diabetes 2006; 55(5): 1463-1469. https://doi.org/10.2337/db05-1423
  4. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 1991; 40(4): 405-412. https://doi.org/10.2337/diab.40.4.405
  5. Eppens MC, Craig ME, Cusumano J, Hing S, Chan AK, Howard NJ, Silink M, Donaghue KC. Prevalence of diabetes complications in adolescents with type 2 compared with type 1 diabetes. Diabetes Care 2006; 29(6): 1300-1306. https://doi.org/10.2337/dc05-2470
  6. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414(6865): 813-820. https://doi.org/10.1038/414813a
  7. Loomans CJ, de Koning EJ, Staal FJ, Rookmaaker MB, Verseyden C, de Boer HC, Verhaar MC, Braam B, Rabelink TJ, van Zonneveld AJ. Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes 2004; 53(1): 195-199. https://doi.org/10.2337/diabetes.53.1.195
  8. Giacco F, Brownlee M. Chapter 35. Pathogenesis of microvascular complications. In: Holt RI, Cockram C, Flyvbjerg A, Goldstein BJ, editors. Textbook of Diabetes, 4th edition. Chichester: Wiley- Blackwell; 2010. p.555.
  9. Jacob RA. The integrated antioxidant system. Nutr Res 1995; 15(5): 755-766. https://doi.org/10.1016/0271-5317(95)00041-G
  10. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 2002; 23(5): 599-622. https://doi.org/10.1210/er.2001-0039
  11. Yasunari K, Maeda K, Nakamura M, Yoshikawa J. Oxidative stress in leukocytes is a possible link between blood pressure, blood glucose, and C-reacting protein. Hypertension 2002; 39(3): 777-780. https://doi.org/10.1161/hy0302.104670
  12. Monnier L, Mas E, Ginet C, Michel F, Villon L, Cristol JP, Colette C. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 2006; 295(14): 1681-1687. https://doi.org/10.1001/jama.295.14.1681
  13. Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 1999; 48(1): 1-9. https://doi.org/10.2337/diabetes.48.1.1
  14. Irshad M, Chaudhuri PS. Oxidant-antioxidant system: role and significance in human body. Indian J Exp Biol 2002; 40(11): 1233-1239.
  15. Lee SD, Park HH, Kim DW. Bang BB. Bioactive constituents and utilities of Artemisia sp. as medical herb and foodstuff. Korean J Food Nutr 2000; 13(5): 490-505.
  16. Ryu SN, Kang SS, Kim JS, Ku BI. Quantitative analysis of eupatilin and Jaceosidin in Artemisia herba. Korean J Crop Sci 2004; 49(6): 452-456.
  17. Al-Mustafa AH, Al-Thunibat OY. Antioxidant activity of some Jordanian medicinal plants used traditionally for treatment of diabetes. Pak J Biol Sci 2008; 11(3): 351-358. https://doi.org/10.3923/pjbs.2008.351.358
  18. Hill JO, Peters JC. Biomarkers and functional foods for obesity and diabetes. Br J Nutr 2002; 88 Suppl 2: S213-S218. https://doi.org/10.1079/BJN2002685
  19. Min SW, Kim NJ, Baek NI, Kim DH. Inhibitory effect of eupatilin and jaceosidin isolated from Artemisia princeps on carrageenaninduced inflammation in mice. J Ethnopharmacol 2009; 125(3): 497-500. https://doi.org/10.1016/j.jep.2009.06.001
  20. Riccardi G, Capaldo B, Vaccaro O. Functional foods in the management of obesity and type 2 diabetes. Curr Opin Clin Nutr Metab Care 2005; 8(6): 630-635. https://doi.org/10.1097/01.mco.0000171126.98783.0c
  21. Kang YJ. Beneficial effects of eupatilin and jaceosidin isolated from Artemisia princeps on regulation of glucose, lipid and antioxidant metabolism in type 2 diabetic mice [dissertation]. Daegu: Kyungpook National University; 2008.
  22. Farhangkhoee H, Khan ZA, Mukherjee S, Cukiernik M, Barbin YP, Karmazyn M, Chakrabarti S. Heme oxygenase in diabetesinduced oxidative stress in the heart. J Mol Cell Cardiol 2003; 35(12): 1439-1448. https://doi.org/10.1016/j.yjmcc.2003.09.007
  23. Nagareddy PR, Xia Z, McNeill JH, MacLeod KM. Increased expression of iNOS is associated with endothelial dysfunction and impaired pressor responsiveness in streptozotocin-induced diabetes. Am J Physiol Heart Circ Physiol 2005; 289(5): H2144-H2152. https://doi.org/10.1152/ajpheart.00591.2005
  24. Komers R, Lindsley JN, Oyama TT, Schutzer WE, Reed JF, Mader SL, Anderson S. Immunohistochemical and functional correlations of renal cyclooxygenase-2 in experimental diabetes. J Clin Invest 2001; 107(7): 889-898. https://doi.org/10.1172/JCI10228
  25. Huang X, Yuang J, Goddard A, Foulis A, James RF, Lernmark A, Pujol-Borrell R, Rabinovitch A, Somoza N, Stewart TA. Interferon expression in the pancreases of patients with type I diabetes. Diabetes 1995; 44(6): 658-664. https://doi.org/10.2337/diab.44.6.658
  26. Wentholt IM, Kulik W, Michels RP, Hoekstra JB, DeVries JH. Glucose fluctuations and activation of oxidative stress in patients with type 1 diabetes. Diabetologia 2008; 51(1): 183-190.
  27. Ruggenenti P, Remuzzi G. Primary prevention of renal failure in diabetic patients: the Bergamo Nephrologic Diabetes Complication Trial. J Hypertens Suppl 1998; 16(1): S95-S97.
  28. Blake R, Trounce IA. Mitochondrial dysfunction and complications associated with diabetes. Biochim Biophys Acta 2014; 1840(4): 1404-1412. https://doi.org/10.1016/j.bbagen.2013.11.007
  29. Yang HG, Kim HJ, Kim HS, Park SN. Antioxidative and antibacterial activities of Artemisia princeps Pampanini extracts. Korean J Microbiol Biotechnol 2012; 40(3): 250-260. https://doi.org/10.4014/kjmb.1207.07014
  30. Kim MJ, Kim DH, Lee KW, Yoon DY, Surh YJ. Jaceosidin induces apoptosis in ras-transformed human breast epithelial cells through generation of reactive oxygen species. Ann N Y Acad Sci 2007; 1095: 483-495. https://doi.org/10.1196/annals.1397.052
  31. Lortz S, Tiedge M. Sequential inactivation of reactive oxygen species by combined overexpression of SOD isoforms and catalase in insulin-producing cells. Free Radic Biol Med 2003; 34(6): 683-688. https://doi.org/10.1016/S0891-5849(02)01371-0
  32. Fu Z, Zhen W, Yuskavage J, Liu D. Epigallocatechin gallate delays the onset of type 1 diabetes in spontaneous non-obese diabetic mice. Br J Nutr 2011; 105(8): 1218-1225. https://doi.org/10.1017/S0007114510004824
  33. Alam MM, Meerza D, Naseem I. Protective effect of quercetin on hyperglycemia, oxidative stress and DNA damage in alloxan induced type 2 diabetic mice. Life Sci 2014; 109(1): 8-14. https://doi.org/10.1016/j.lfs.2014.06.005
  34. Hong JH, Jeon JL, Lee JH, Lee IS. Antioxidative properties of Artemisia princeps Pamp. J Korean Soc Food Sci Nutr 2007; 36(6): 657-662. https://doi.org/10.3746/jkfn.2007.36.6.657
  35. Lee SJ, Shin JH, Ju JC, Kang SK, Sung NJ. Hypoglycemic and hypolipidemic effects of Orostachys japonicus with medicinal herbs in streptozotocin-induced diabetic rats. J Korean Soc Food Sci Nutr 2013; 42(4): 587-594. https://doi.org/10.3746/jkfn.2013.42.4.587
  36. Ramachandran V, Saravanan R. Asiatic acid prevents lipid peroxidation and improves antioxidant status in rats with streptozotocininduced diabetes. J Funct Foods 2013; 5(3): 1077-1087. https://doi.org/10.1016/j.jff.2013.03.003
  37. Kim MW. Effect of Sea Buckthorn leaves on hepatic enzyme levels in streptozotocin induced diabetic rats. J Korean Soc Food Sci Nutr 2013; 42(1): 40-45. https://doi.org/10.3746/jkfn.2013.42.1.040
  38. Anaya-Eugenio GD, Rivero-Cruz I, Rivera-Chavez J, Mata R. Hypoglycemic properties of some preparations and compounds from Artemisia ludoviciana Nutt. J Ethnopharmacol 2014; 155(1): 416-425. https://doi.org/10.1016/j.jep.2014.05.051
  39. Yuan H, Meng S, Wang G, Gong Z, Sun W, He G. Hypoglycemic effect of triterpenoid-rich extracts from Euryale ferox shell on normal and streptozotocin-diabetic mice. Pak J Pharm Sci 2014; 27(4): 859-864.
  40. Nakano M, Onodera A, Saito E, Tanabe M, Yajima K, Takahashi J, Nguyen VC. Effect of astaxanthin in combination with alphatocopherol or ascorbic acid against oxidative damage in diabetic ODS rats. J Nutr Sci Vitaminol (Tokyo) 2008; 54(4): 329-334. https://doi.org/10.3177/jnsv.54.329

Cited by

  1. 섬애약쑥 주정 추출물로 제조한 발효식초의 품질특성 vol.24, pp.5, 2017, https://doi.org/10.11002/kjfp.2017.24.5.647
  2. 스트렙토조토신으로 유도된 당뇨 마우스에서 Monascus purpureus을 이용한 발효 쑥의 기억력 개선 효과 vol.49, pp.5, 2014, https://doi.org/10.9721/kjfst.2017.49.5.550
  3. 당뇨유발 흰쥐에 있어 여주분말의 항당뇨 및 항산화작용에 대한 연구 vol.51, pp.4, 2014, https://doi.org/10.15324/kjcls.2019.51.4.504
  4. Bidirectional Regulatory Mechanisms of Jaceosidin on Mitochondria Function: Protective Effects of the Permeability Transition and Damage of Membrane Functions vol.253, pp.1, 2014, https://doi.org/10.1007/s00232-019-00102-4
  5. Jaceosidin Ameliorates Insulin Resistance and Kidney Dysfunction by Enhancing Insulin Receptor Signaling and the Antioxidant Defense System in Type 2 Diabetic Mice vol.23, pp.10, 2020, https://doi.org/10.1089/jmf.2020.4739
  6. A Review on Antidiabetic Activity of Centaurea spp.: A New Approach for Developing Herbal Remedies vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/5587938