DOI QR코드

DOI QR Code

Study on a Separator for the Zn-Br Redox Flow Battery

Zn-Br 레독스 흐름 전지용 격막에 관한 연구

  • 나일채 ((주) CNL Energy) ;
  • 조홍식 (호서대학교 일반대학원 그린에너지공학과) ;
  • 유철휘 (호서대학교 일반대학원 그린에너지공학과) ;
  • 황갑진 (호서대학교 일반대학원 그린에너지공학과)
  • Received : 2014.09.20
  • Accepted : 2014.10.20
  • Published : 2014.10.31

Abstract

Two commercial membranes (porous membrane and cation exchange membrane) were evaluated as a separator in the Zn-Br redox-flow battery (ZBRFB). The performance properties of ZBRFB were test in the current density of $20mA/cm^2$. The electromotive forces (OCV at SOC 100%) of ZBRFB using SF-600 (porous membrane) and Nafion 117 (cation exchange membrane) were 1.87 V and 1.93 V, respectively. The cycle performance of ZBRFB using each membrane was evaluated during 7 cycles. The performance of ZBRFB using SF-600 membrane was 89.76%, 83.46% and 74.88% for average current efficiency, average voltage efficiency and average energy efficiency, respectively. The performance of ZBRFB using Nafion117 membrane was 97.7%, 76.33% and 74.56% for average current efficiency, average voltage efficiency and average energy efficiency, respectively.

두 종류의 막(다공성 막, 양이온교환막)을 사용하여 아연-브롬 레독스-흐름 전지(ZBRFB, Zn-Br redox-flow battery)의 성능을 평가하였다. ZBRFB의 성능평가는 $20mA/cm^2$의 전류밀도에서 진행하였다. 다공성 막인 SF-600을 사용한 ZBRFB의 기전력(SOC 100%에서의 OVC)은 1.87 V, 양이온교환막인 Nafion117 막을 사용한 ZBRFB의 기전력은 1.93 V를 나타냈다. 각 막을 사용한 ZBRFB의 성능은 7회 충 방전 실험을 진행하여 평가하였다. SF600 막을 사용한 ZBRFB의 평균 전류효율은 89.76%, 평균 전압효율은 83.46%, 평균 에너지효율은 74.88%를 나타냈으며, Nafion117 막을 사용한 ZBRFB의 평균 전류효율은 97.7%, 평균 전압효율은 76.33%, 평균 에너지효율은 74.56%를 나타냈다.

Keywords

References

  1. H.-S. Choi, Y.-H. Oh, C.-H. Ryu, and G.-J. Hwang, "Study on the electrolyte for Zn-Br redox flow battery", Trans. of the Korean Hydrogen and New Energy Society, 24(4), 347 (2013). https://doi.org/10.7316/KHNES.2013.24.4.347
  2. G.-J. Hwang, A.-S. Kang, and H. Ohya, "Review for the redox flow secondary battery", Chemical Industry and Technology, 16(5), 455 (1998).
  3. T. Nguyen and R. F. Savinell, "Flow batteries", The Electrochemical Society Interface, Fall 2010, pp. 54-56.
  4. P. M. Hoobin, K. J. Cathro, and J. O. Niere, "Stability of zinc/bromine battery electrolytes", J. Appl. Electrochem., 19, 943 (1989). https://doi.org/10.1007/BF01007946
  5. W. Pell, "Zinc/bromine battery electrolytes: electrochemical, physicochemical and spectroscopic studies", A Thesis of degree of Doctor, University of Ottawa, Canada (1994).
  6. H. S. Lim, A. M. Lackner, and R. C. Knechtli, "Zinc-bromine secondary battery", J. Eelctrochem. Sco.; Elctrochemical Science and Technology, 124(8), 1154 (1977). https://doi.org/10.1149/1.2133517
  7. P. Eidler, "Development of zinc/bromine batteries for load-leveling applications", SAND99-1853, Sandia National Lab., Phase I Final Report, USA (1999).
  8. N. Clark, P. Eidler, and P. Lex, "Development of zinc/bromine batteries for load-leveling applications", SAND99-2691, Sandia National Lab., PhaseII Final Report, USA (1999).
  9. D. M. Rose and S. R. Ferreira, "Initial test results from the Redflow 5 kW, 10 kWh zinc-bromine module", SAND2012-1352, Sandia National Lab. Report, USA (2012).
  10. T. J. Simons, A. A. J. Torriero, P. C. Howlett, D. R. MacFarlane, and M. Forsyth, "High current density, efficient cycling of Zn2+ in 1-ethyl-3-methylimidazolium dicyanamide ionic liquid: The effect of $Zn^{2+}$ salt and water concentration", Electro. Commu., 18, 119 (2012). https://doi.org/10.1016/j.elecom.2012.02.034
  11. M. Xu, D. G. Ivey, Z. Xie, W. Qu, and E. Dy, "The state of water in 1-butly-1-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide and its effect on Zn/Zn(II) redox behavior", Electrochimica Acta, 97, 289 (2013). https://doi.org/10.1016/j.electacta.2013.03.027
  12. NEDO, "NEDOhouyu kougyosyoyuuken nnadono tabunnyaheno ouyoukanousei syousa (III), Heisei 7nen (nijidentiniyoru dennryoku zoutyou kannrenn)", NEDO Report, NEDO-P-9519, Japan (1994).
  13. D. J. Kim, and S. Y. Nam, "Research trend of polymeric ion exchnage membrane for vanadium redox flow battery", Membrane Journal, 22(5), 285 (2012).
  14. C. J. Park, I. H. Kim, S. P. Kim, H. M. Lee, S. I. Cheong, H. S. Choi, and J. W. Rhim, "Preparation of poly(ethylenimine) anionic exchange membrane impregnated in porous polyethylene membranes", Membrane Journal, 21(1), 91 (2011).
  15. D. H. Kim, H. I. Cho, B. S. Lee, B. P. Hong, S. Y. Lee, S. Y. Nam, M. S. Seo, J. W. Rhim, and H. S. Byun, "Studies on the secondary battery application of the surface fluorinated microporous PE separator membranes", Membrane Journal, 18(1), 75 (2008).
  16. H.-S. Choi, Y.-H. Oh, C.-H. Ryu, and G.-J. Hwang, "Characteristics of the all-vanadium redox flow battery using anion exchange membrane", J. Taiwan Inst. Chem. Eng., in press (2014).