DOI QR코드

DOI QR Code

Membrane Fouling Models for Activated Sludge Cakes

활성슬러지 케이크의 분리막 오염 모델

  • Kim, Dae Chun (Graduate School of Energy and Environment, Seoul National Univ. of Science & Technology) ;
  • Chung, Kun Yong (Department of Chemical and Biomolecular Engineering, Seoul National Univ. of Science & Technology)
  • 김대천 (서울과학기술대학교 에너지환경대학원) ;
  • 정건용 (서울과학기술대학교 화공생명공학과)
  • Received : 2014.06.16
  • Accepted : 2014.06.21
  • Published : 2014.06.30

Abstract

This experiment was carried out for a laboratory scale activated sludge bioreactor equipped with submerged flat sheet membrane using the synthetic wastewater. The membrane system for the activated sludge solution of MLSS 5,000 mg/L was operated with constant permeate flux by continuously permeating and periodically 10 minute-permeating/2 minute-resting modes, respectively. The transmembrane pressure was measured as the permeate flux increased from 10 to $25L/m^2{\cdot}hr$ under the constant air flowrate 0.25 L/min. Also, the complete blocking, standard blocking, intermediate blocking, incompressible cake and linear compressible cake fouling models were retrofitted for the experimental data in order to determine the state of the membrane fouling. Because the transmembrane pressure fluctuated as a pulse shape for every period of 10 minute-permeating/2-minute resting mode, the membrane fouling models were separately applied for the maximum and minimum connecting lines. The linear compressible cake fouling model for the activated sludge cakes was the best fitted with the experimental results from the above five models.

본 실험은 실험실적 규모의 침지식 평막형 분리막이 장착된 활성슬러지 생물반응기에 인공폐수를 사용하여 수행하였다. 분리막 운전은 MLSS 5,000 mg/L 활성슬러지 용액을 일정 유량으로 계속 투과시키는 방식과 주기적으로 10분여과/2분휴지 방식으로 구분하여 실시하였다. 산기량은 0.25 L/min로 일정하게 유지한 상태에서 투과유속을 10에서 $25L/m^2{\cdot}hr$까지 증가시키면서 막간차압을 측정하였다. 또한 분리막 오염 상태를 판단하기 위하여 완전막힘, 표준막힘, 중간막힘, 비압축성 케이크 및 선형압축성 케이크 오염 모델을 실험값에 적용하였다. 10분운전/2분휴지 운전방식에서는 매 주기마다 펄스형태로 막간차압이 변화하므로 최고점 및 최저점 연결선으로 구분하여 막오염 모델을 적용하였다. 활성슬러지 케이크 막오염은 이상의 5가지 오염 모델 중 선형압축성 케이크 오염 모델이 모든 투과실험 결과와 가장 잘 일치하였다.

Keywords

References

  1. I. H. Cho and J. T. Kim, "Trends in the technology and market of membrane bioreactors (MBR) for wastewater treatment and reuse and development directions", Membrane Journal, 23, 24 (2013).
  2. J. T. Kim, H. Hwang, B. Hong, and H. Byun, "The background and direction of R & D project for advanced technology of wastewater treatment and reuse", Membrane Journal, 21, 277 (2011).
  3. H. Kaneko and K. Funatsu, "Physical and statistical model for predicting a transmembrane pressure jump for a membrane bioreactor", Chemometr. Intell. Lab., 121, 66 (2013). https://doi.org/10.1016/j.chemolab.2012.11.013
  4. P. H. Hermans and H. L. Bredee, "Principles of the mathematical treatment of constant pressure filtration", J. Soc. Chem. Ind., 55, 1 (1936). https://doi.org/10.1002/jctb.5000550101
  5. J. M. Michael and C. Orr, "Filtration: principles and practices", pp. 135-139, Marcel Dekker Inc., New York (1987).
  6. J. Hermia, "Constant pressure blocking filtration laws-application to power-law non-newtonian fluids", Trans. Inst. Chem. Eng., 60, 183 (1982).
  7. C. C. Ho and A. L. Zydney, "Transmembrane pressure profiles during constant flux : microfiltration of bovine serum albumin", J. Membr. Sci., 209, 363 (2002). https://doi.org/10.1016/S0376-7388(02)00282-X
  8. W. Yuan, A. Kocic, and A. L. Zydney, "Analysis of humic acid fouling during microfiltration using a pore blockage-cake filtration model", J. Membr. Sci., 198, 51 (2002). https://doi.org/10.1016/S0376-7388(01)00622-6
  9. S. Chllam and W. Xu, "Blocking laws analysis of dead-end constant flux microfiltration of compressible cakes", J. Colloid. Interf. Sci., 301, 248 (2006). https://doi.org/10.1016/j.jcis.2006.04.064
  10. S. Chellam and N. G. Cogan, "Colloidal and bacterial fouling during constant flux microfiltration: comparison of classical blocking laws with a unified model combining pore blocking and EPS secretion", J. Membr. Sci., 382, 148 (2011). https://doi.org/10.1016/j.memsci.2011.08.001
  11. S. Judd, "The MBR book: principles and applications of membrane bioreactors in water and wastewater treatment, pp. 90-101, Elsevier Science, Oxford, UK (2008).
  12. A. Shrestha and J. Pellegrino, S. M. Husson and S. R. Wickramasinghe, "A modified porometry approach towards characterization of MF membranes", J. Membr. Sci., 421-422, 145 (2012). https://doi.org/10.1016/j.memsci.2012.07.005
  13. M. M. T. Khana, S. Takizawab, Z. Lewandowskic, W. L. Jonesc, A. K. Camperc, H. Katayamab, F. Kurisub, and S. Ohgakid, "Membrane fouling due to dynamic particle size changes in the aerated hybrid PAC-MF system", J. Membr. Sci., 371, 99 (2011). https://doi.org/10.1016/j.memsci.2011.01.017
  14. S. T. Nam and M. J. Han, "Fouling behavior of bentonite colloidal suspensions in microfiltration", Membrane Journal, 18, 53 (2008).
  15. A. Y. Olenko and T. K. Poganyb, "Time shifted aliasing error upper bounds for truncated sampling cardinal series", J. Math Anal. Appl., 324, 262 (2006). https://doi.org/10.1016/j.jmaa.2005.12.008