DOI QR코드

DOI QR Code

Preparation of Lignocellulose Nanofibers from Korean White Pine and Its Application to Polyurethane Nanocomposite

국산 잣나무 유래 리그노셀룰로오스 나노섬유 제조 및 이를 이용한 강화 폴리우레탄 나노복합재료

  • Jang, Jae-Hyuk (College of Forest & Environmental Sciences, Kangwon National University) ;
  • Lee, Seung-Hwan (College of Forest & Environmental Sciences, Kangwon National University) ;
  • Kim, Nam-Hun (College of Forest & Environmental Sciences, Kangwon National University)
  • 장재혁 (강원대학교 산림환경과학대학) ;
  • 이승환 (강원대학교 산림환경과학대학) ;
  • 김남훈 (강원대학교 산림환경과학대학)
  • Received : 2014.06.10
  • Accepted : 2014.07.08
  • Published : 2014.11.25

Abstract

The effect of steam and ozone pretreatments on fibrillation efficiency by wet disk-milling was investigated. Hemicellulose (40%) and lignin (42%) of Korean white pine were partially removed by steam and ozone pretreatments, respectively. With increasing wet disk-milling time, the diameter of fibers was significantly decreased and its size distribution became narrow. Especially, the average diameters of lignocellulose nanofibers after steam and ozone pretreatments were 19 nm and 12 nm, respectively. Thus-obtained lignocellulose nanofibers-reinforced polyurethane composite was prepared. Tensile strength and elastic modulus were drastically improved with increasing wet disk-milling time and lignocellulose nanofiber content. Nanocomposite reinforced by lignocellulose nanofibers after two pretreatments showed higher tensile properties, compared to that reinforced by lignocellulose nanofiber without pretreatment, at the similar wet disk-milling time.

본 연구에서는 고온증기 및 오존처리 전처리 후, 습식 고전단 해섬하여 국내산 잣나무로부터 리그노셀룰로오스 나노섬유를 제조하였다. 고온증기 및 오존 전처리에 의해 헤미셀룰로오스 및 리그닌 성분은 각각 약 40%, 42%의 감소효과를 보였으며, 무처리 목분에 비교하여 습식 고전단 해섬처리 시간이 증가함에 따라 섬유의 직경이 더욱 크게 감소하였으며, 좁은 치수분포를 나타냈다. 두 전처리 후 얻어진 리그노셀룰로오스 나노섬유는 평균직경이 각각 19 nm 및 12 nm로 매우 가느다란 것으로 관찰되었다. 얻어진 리그노셀룰로오스 나노섬유를 폴리우레탄 폴리머의 강화필러로 첨가한 결과, 첨가량 및 해섬처리 시간이 증가함에 따라 복합재료의 인장강도와 탄성율이 증가하였다. 특히, 두 전처리 후 얻어진 리그노셀룰로오스 나노섬유의 경우가 전처리하지 않은 경우에 비해 복합재료의 인장강도 특성을 더 향상시키는 것을 알 수 있었다.

Keywords

References

  1. Abe, K., Sasaki, T., Kokusho T., Shibata M., Uemura, Y., Hatate, Y. 2007. Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolucules. 8: 3276-3278. https://doi.org/10.1021/bm700624p
  2. Ando, H., Sakaki, T., Kokusho, T., Shibata, M., Uemura, Y., Hatate, Y. 2000. Decomposition behavior of plant biomass in hot-compressed water. Industrial and Engineering Chemistry Research. 39: 3688-3693. https://doi.org/10.1021/ie0000257
  3. Barros, R.R.O., Paredes, R.S., Endo, T., Bon, E.P.S., Lee, S.H. 2013. Association of wet disk milling and ozonolysis as pretreatment for enzymatic saccharification of sugarcane bagasse and straw. Bioresources Technology. 136: 288-294. https://doi.org/10.1016/j.biortech.2013.03.009
  4. Bondeson, D., Mathew, A., Oksman, K. 2009. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose. 13: 171-180.
  5. Chang, F., Lee, S.H., Toba, K., Nagatani, A., Endo, T. 2012. Bamboo nanofiber preparation by HCW and grinding treatment and its application for nanocomposite. Wood Science and Technology 46: 393-403. https://doi.org/10.1007/s00226-011-0416-0
  6. Cherian, B.M., Leão, A.L., Souza, S.F., Thomas, S., Pothan, L.A., Kottaisamy, M. 2010. Isolation of nanocellulose from pineapple leaf fibers by steam explosion. Carbohydrate Polymers. 81: 720-725. https://doi.org/10.1016/j.carbpol.2010.03.046
  7. Chun, S.J., Choi, E.S., Lee, E.H., Kim, J.H., Lee, S.Y., Lee, S.Y. 2012. Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. Journal of Materials Chemistry. 22: 16618-16626. https://doi.org/10.1039/c2jm32415f
  8. Deepa, B., Abraham, E., Cherian, B.M., Bismarck, A., Blaker, J.J., Pothan, L.A., Leao, A.L., Souza, S.F., Kottaisamy, M. 2011. Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresources Technology. 102: 1988-1997. https://doi.org/10.1016/j.biortech.2010.09.030
  9. Gratzl, J.S. 1992. Die chemischen Grundlagen der Zellstoffbleiche mit Sauerstoff, Wasserstoffperoxid und Ozon-ein kurzer Uberblick. Das Papier 46(10A): V1-V8.
  10. Jang, J.H., Kwon, G.J., Kim, J.H., Kwon, S.M., Yoon, S.L., Kim, N.H. 2012. Preparation of cellulose nanofibers from domestic platation resources. Journal of the Korean Wood Sciences and Technology. 40(3): 156-163. https://doi.org/10.5658/WOOD.2012.40.3.156
  11. Jang, J.H., Lee, S.H., Endo, T., Kim, N.H. 2013. Characteristics of microfibrillated cellulosic fibers and paper sheets from Korean white pine. Wood Science and Technology. 47: 925-937. https://doi.org/10.1007/s00226-013-0543-x
  12. Jang, J.H., Lee, S.H., Kim, N.H. 2014. Effect of pMDI as coupling agent on the properties of microfibrillated cellulose-reinforced PBS nanocomposite. Journal of the Korean Wood Sciences and Technology. in press. https://doi.org/10.5658/WOOD.2014.42.4.483
  13. Japanese Standards Association. 1999. Testing method for tensile properties of plastic films & sheets. JIS K 7127: 1999 (ISO 527-3: 1995).
  14. Lee, S.H., Chang, F., Inoue, S., Endo, T. 2010. Increase in enzyme accessibility by generation of nanospace in cell wall supramolecular structure. Bioresources Technology. 101(19): 7218-7223. https://doi.org/10.1016/j.biortech.2010.04.069
  15. Lemeune, S., Jameel, H., Chang, H.M., Kadla, J.F. 2004. Effects of ozone and chlorine dioxide on the chemical properties of cellulose fibers. Journal of Applied Polymer Science. 93: 1219-1223. https://doi.org/10.1002/app.20509
  16. Li, J., Wei, X., Wang, Q., Chen, J., Chang, G., Kong, L., Su, J., Liu, Y. 2012. Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenizer. Carbohydrate. Polymers. 90: 1609-1613. https://doi.org/10.1016/j.carbpol.2012.07.038
  17. Park, B.D., Um, I.C., Lee, S.Y., Dufresne, A. 2014. Preparation and characterization of cellulose nanofibril/polyvinyl alcohol composite nanofibers by electrospinning. Journal of the Korean Wood Sciences and Technology. 42(2): 119-129. https://doi.org/10.5658/WOOD.2014.42.2.119
  18. Paakko, M., Ankerfors, M., Kosonen, H., Nykanen, A., Ahola, S., Osterberg, M., Ruokolainen, J., Laine, J., Larsson, P.T., Ikkala, O. Lindstrom, T. 2007. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules. 8: 1934-1941. https://doi.org/10.1021/bm061215p
  19. Renneckar, S., Zink-sharp, A., Esker, A.R., Johnson, R.K., Glasser, W.G. 2006. Cellulose Nanocomposites: Processing, Characterization and Properties, ACS Symposium Series 938, Ed. by Oksman, K. Sain, M., American Chemical Society, Washington DC, USA. pp. 78-96.
  20. Roohani, M., Habibi, Y., Belgacem, N.M., Ebrahim, G., Karimi, A.N., Dufresne, A. 2008. Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. European Polymer Journal. 44: 2489-2498. https://doi.org/10.1016/j.eurpolymj.2008.05.024
  21. Saito, T., Kimura, S., Nishiyama, Y. Isogai, A. 2007. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecule. 8: 2485-2491. https://doi.org/10.1021/bm0703970
  22. Seydibeyoglu, M. O., Oksman, K. 2008. Novel nanocomposites based on polyurethane and micro fibrillated cellulose. Composites Science and Technology. 68: 908-914. https://doi.org/10.1016/j.compscitech.2007.08.008
  23. Wang, S., Cheng, Q. 2009. A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication. Part 1. Process optimization. Journal of Applied Polymer Science. 113(2): 1270-1275. https://doi.org/10.1002/app.30072
  24. Wise, L.E., Murphy, M., Addieco, A.A. 1946. Isolation of holocellulose from wood. Paper Trade Journal. 122: 35-43.
  25. Zhang, Y., Kang, G., Ni, Y., van Heiningen, A.R.P. 1997. Degradation of carbohydrate model compounds during ozone treatment. Journal of Pulp and Paper Science. 23(1): J23-J27.
  26. Zimmermann, T., Bordeanu, N., Sturb, E. 2010. Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydrate Polymers. 79: 1086-1093. https://doi.org/10.1016/j.carbpol.2009.10.045

Cited by

  1. Pyrolysis kinetics and product properties of softwoods, hardwoods, and the nut shell of softwood vol.33, pp.8, 2016, https://doi.org/10.1007/s11814-016-0142-2
  2. Delignification Effect on Properties of Lignocellulose Nanofibers from Korean White Pine and Their Nanopapers vol.43, pp.1, 2015, https://doi.org/10.5658/WOOD.2015.43.1.9
  3. Mechanical and Thermal Properties of Hydroxypropyl Cellulose/TEMPO-oxidized Cellulose Nanofibril Composite Films vol.43, pp.6, 2015, https://doi.org/10.5658/WOOD.2015.43.6.740
  4. A novel method to prepare lignocellulose nanofibrils directly from bamboo chips pp.1572-882X, 2018, https://doi.org/10.1007/s10570-018-2067-x