DOI QR코드

DOI QR Code

Effect of Anhydrite on the Mechanical and Durability Properties of High Volume Slag Concrete

무수석고 함량이 고로슬래그 미분말을 대량 활용한 콘크리트 특성에 미치는 영향

  • 문규돈 (한국건설생활환경시험연구원 첨단건설재료센터) ;
  • 김주형 (한국건설생활환경시험연구원 첨단건설재료센터) ;
  • 조영근 (한국건설생활환경시험연구원 첨단건설재료센터) ;
  • 최영철 (한국건설생활환경시험연구원 첨단건설재료센터)
  • Received : 2014.09.18
  • Accepted : 2014.09.23
  • Published : 2014.09.30

Abstract

High volume slag concrete is attracting new attention and are thought to have promising potential for industrial applications, partly due to the climate debate, but especially due to their very low heat of hydration and their good durability in chemically aggressive environments. However, High volume slag concretes tend to have slower strength development especially. In this study, the effect of anhydrite ($CaSO_4$) on the mechanical and durability performance of high volume slag concrete were investigated. The main variables were anhydrite contents (0, 4, 6, 8, 10%). Test results show that 4~8% anhydrite concrete have improved engineering properties (hydration, compressive strength, shrinkage, creep, carbonation) as control concrete at early ages.

온실가스 저감 및 자원활용 목적으로 고로슬래그 미분말을 다량으로 활용한 콘크리트에 대한 연구가 활발히 진행되고 있으나, 조기강도 및 내구성능 확보에 어려움이 있다. 따라서, 본 연구에서는 무수석고 함량(0%, 4%, 6%, 8%, 10%)에 따라 고로슬래그 미분말을 대량 활용한 콘크리트의 수화, 강도발현, 크리프, 탄산화, 건조수축 특성을 분석하였다. 무수석고를 바인더의 4~6% 수준으로 치환할 경우 고로슬래그 미분말 대량 활용 콘크리트의 가장 취약점인 초기강도 발현을 보완할 수 있으며, 내구성 측면에서도 보통 포틀랜드 시멘트를 사용한 콘크리트와 유사한 성능을 발현하는 것을 알 수 있었다. 반면, 무수석고를 8% 이상 활용할 경우 초기강도 증진 효과가 미흡한 결과를 나타냈다.

Keywords

References

  1. Architectural Institute of Japan. (1996). Recommendation for practice of concrete make use of ground granulation blast furnace slag. Japan: Architectural Institute of Japan, 25-51.
  2. ASTM C 1702, American Society for Testing and Materials.
  3. Gruskovnjak, Lothenbach, Winnefeld, Figi, R. Ko, S.-C. Adler, M. Mader, U. (2008). Hydration mechanisms of super sulphated slag cement. Cement & Concrete Research, 38(7), 983-992. https://doi.org/10.1016/j.cemconres.2008.03.004
  4. Kim, M.H., Kim, J.H., Cho, B.K., Na, C.S., Kim, Y.D. (2005). An Experimental Study on the Engineering Properties and Durability of Concrete According to the Fineness and Replacement Ratio of Blast-Furnace Slag. Journal of the Korea Institute of Building Construction, 5(1), 81-88 [in Korean]. https://doi.org/10.5345/JKIC.2005.5.1.081
  5. KS F 2403, KS F 2421, KS F 2424, KS F 2456, KS F 2594, KS F 2596, Korea Industrial Standards [in Korean].
  6. Jianyong L., Yan Y.(2001) A study on creep and drying shrinkage of high performance concrete. Cement and Concrete Research. 31, 1203-06. https://doi.org/10.1016/S0008-8846(01)00539-7
  7. J.T. Song, S.Y. Go, J.S. Rho. (1997). Hydration in the System of Anhydrite II-Blastfurnace Slag. Journal of the Korean Ceramic Society, 34(8), 861.
  8. Lerch, W. (1945). Effect of $SO_{3}$ Content of Cement on Durability of Concrete. PCA Research and Developement (1945) 0285, 9.
  9. Lim, M.K., Park, M.Y., Jung, S.J., (2007). Study of the Strength and Durability Properties on Recycled Aggregate Concrete and Blain of Blast Furnace Slag. Journal of the Korea Institute of Building Construction, 7(4), 101-108 [in Korean]. https://doi.org/10.5345/JKIC.2007.7.4.101
  10. M. Singh, M. Garg. (1995). Activation of gypsum anhydrite-slag mixtures, Cement & Concrete Research, 25, 332-338. https://doi.org/10.1016/0008-8846(95)00018-6
  11. Park, C.B., Ryu, D.H., Seo, C.Ho., (2012). Hydration of High Volume Mineral Admixtures Binder with Kind of Activators. Journal of Architectural Engineering, 28(10), 89-96 [in Korean].
  12. Park, C.B., Ryu, D.H., Seo, C.Ho., (2012). Properties of High Volume Mineral Admixtures Concrete using Inorganic Additives, Journal of Architectural Engineering , 28(3), 75-82 [in Korean].
  13. Park, E.M., Moon, K. J., So, Y. S., (2001). Effect of Inorganic Stimulus Agent on Compressive Strength and Pore Structure of Blast Furnace Slag Cement, Journal of Architectural Engineering, 17(9), 143-150 [in Korean].
  14. R.X. Magallanes-Rivera, J.I. Escalante-Garcia. (2014). Anhydrite/ hemihydrate-blast furnace slag cementitious composites: Strength development and reactivity. Construction and Building Materials, 65, 20-28. https://doi.org/10.1016/j.conbuildmat.2014.04.056
  15. Syam Nair, Dallas Little. (2009). Water as the Key to Expansion of Ettringite in Cementitious Materials. Journal of the Transportation Research Board, 2104, 55-62. https://doi.org/10.3141/2104-06
  16. T. Matschei, F. Bellmann, J. Stark. (2005). Hydration behaviour of sulphate-activated slag cements, Adv Cem Res, 18, 167-178.

Cited by

  1. Durability Assessment of High Strength Concrete with High Volume Mineral Admixture vol.27, pp.6, 2015, https://doi.org/10.4334/JKCI.2015.27.6.641
  2. Improving Quality of Eco-Mortar Incorporating Blast Furnace Slag and Recycled Aggregate Depending on Replacement Gypsum and Cement vol.15, pp.2, 2015, https://doi.org/10.5345/JKIBC.2015.15.2.193