DOI QR코드

DOI QR Code

Anti-Obesity Effects of Jeju Hallabong Tangor (Citrus kiyomi${\times}$ponkan) Peel Extracts in 3T3-L1 Adipocytes

제주산 한라봉 과피 추출물의 지방세포에서의 항비만 효과

  • Lim, Heejin (Department of Food and Nutrition, College of Natural Sciences, Myongji University) ;
  • Seo, Jieun (Department of Food and Nutrition, College of Natural Sciences, Myongji University) ;
  • Chang, Yun-Hee (Department of Food and Nutrition, College of Natural Sciences, Myongji University) ;
  • Han, Bok-Kyung (BKbio Co. Ltd.) ;
  • Jeong, Jung-Ky (BKbio Co. Ltd.) ;
  • Park, Su-Beom (BKbio Co. Ltd.) ;
  • Choi, Hyuk-Joon (BKbio Co. Ltd.) ;
  • Hwang, Jinah (Department of Food and Nutrition, College of Natural Sciences, Myongji University)
  • Received : 2014.07.08
  • Accepted : 2014.09.22
  • Published : 2014.11.30

Abstract

Jeju Hallabong Tangor (Citrus kiyomi${\times}$ponkan) is a Citrus species with a variety of physiological properties such as anti-oxidant, anti-inflammation, anti-cancer, and anti-obesity. We investigated the anti-obesity effects of Hallabong Tangor peel extracts before (HLB) and after (HLB-C) bioconversion with cytolase based on modulation of adipocyte differentiation and lipid metabolism in 3T3-L1 adipocytes. Treatment with cytolase decreased flavanone rutinoside forms (narirutin and hesperidin) and increased flavanone aglycone forms (naringenin and hesperetin). During adipocyte differentiation, 3T3-L1 cells were treated with 0.5 mg/mL of Sinetrol (a positive control), HLB or HLB-C. Adipocyte differentiation was inhibited in both citrus groups, but not in control and Sinetriol groups. HLB and HLB-C tended to reduce insulin-induced mRNA levels of CCAAT/enhancer-binding protein ${\alpha}$ ($C/EBP{\alpha}$) and sterol regulatory element-binding protein 1c (SREBP1c). Compared to the control and Sinetrol groups, HLB and HLB-C markedly suppressed insulin-induced protein expression of $C/EBP{\alpha}$ and peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$). The HLB and Sinetrol groups, but not HLB-C group, significantly increased adipolytic activity with higher release of free glycerol compared to the control group in differentiated 3T3-L1 adipocytes. These results suggest that bio-conversion of Hallabong Tangor peel extracts with cytolase increases aglycone flavonoids. Irrespective of bioconversion, both Hallabong Tangor peel extracts exert anti-obesity effects that may contribute to prevention of obesity through inhibition of adipocyte differentiation or induction of adipolytic activity.

본 연구는 한라봉 과피 추출물과 효소 처리시킨 한라봉 과피추출물의 3T3-L1 지방전구세포에서의 항비만 효과를 비교하여 연구하였다. Cytolase를 이용한 플라보노이드 형태 전환으로 한라봉 과피 추출물에 다량 존재하던 narirutin이 naringenin으로 또는 hesperidin이 hesperetin으로 변환되었다. 지방전구세포에 분화배지와 함께 10일간 HLB와 HLB-C, 양성대조군으로 Sinetrol을 다양한 농도로 처리한 결과 모든 세포군에서 0.5 mg/mL 농도에서는 세포생존율에 유의적인 영향을 미치지 않았기 때문에 적정 처리 농도를 0.5 mg/mL로 확정하였다. Oil red O 염색을 통해 지방세포의 분화 정도를 측정한 결과 양성대조군인 Sinetrol 처리군 보다 같은 농도의 HLB와 HLB-C 처리군이 분화를 억제시켰다. 지방세포 분화 억제의 분자생화학적 기전을 규명하기 위해 분화 관련 유전자와 단백질 발현을 RT- PCR과 western blotting을 통해서 실험한 결과, 0.5 mg/mL 농도의 HLB와 HLB-C 처리군에서 대조군과 Sinetrol군에 비해 $C/EBP{\alpha}$, SREBP1c의 유전자가 감소하는 경향성을 나타내었고 $C/EBP{\alpha}$$PPAR{\gamma}$의 단백질 발현이 유의적으로 감소하는 것을 확인하였다. 이미 형성된 지방세포의 분해 작용에 HLB와 HLB-C가 영향을 주는지 평가하기 위해 완전히 분화된 지방세포에 24시간 동안 0.5 mg/mL의 농도로 처리한 결과 Sinetrol과 HLB는 지방분해 효과를 나타내었으나 HLB-C는 지방세포의 분해 작용에 유의적인 영향을 주지 않았다. 따라서 이러한 실험 결과들은 한라봉 과피 추출물이 지방세포 분화 억제와 지질분해 활성이 있고 이는 cytolase로 효소 처리를 할 경우에도 비슷한 결과를 보였으며 오히려 지질분해 활성은 감소하였다. 한라봉 과피 추출물의 in vitro 상에서 검증된 항비만 효능이 향후에 in vivo 상에서 지방분화 억제와 지방분해에 미치는 영향에 대한 추가 검증이 필요하다고 사료된다. 또한 향후 한라봉뿐 아니라 다른 감귤류를 이용하여 다양한 probiotics 미생물에 존재하는 효소와 다른 상업화 효소 등을 통한 물질전환 효과를 비교 연구하는 것이 필요하다고 사료된다.

Keywords

References

  1. Kopelman PG. 2000. Obesity as a medical problem. Nature 404: 635-643.
  2. Ailhaud G, Guesnet P, Cunnane SC. 2008. An emerging risk factor for obesity: does disequilibrium of polyunsaturated fatty acid metabolism contribute to excessive adipose tissue development? Br J Nutr 100: 461-470. https://doi.org/10.1017/S0007114508911569
  3. Kershaw EE, Flier JS. 2004. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89: 2548-2556. https://doi.org/10.1210/jc.2004-0395
  4. Park HS, Kim SH, Kim YS, Ryu SY, Hwang JT, Yang HJ, Kim GH, Kwon DY, Kim MS. 2009. Luteolin inhibits adipogenic differentiation by regulating $PPAR{\gamma}$ activation. Biofactors 35: 373-379. https://doi.org/10.1002/biof.38
  5. Kim GS, Park HJ, Woo JH, Kim MK, Koh PO, Min W, Ko YG, Kim CH, Won CK, Cho JH. 2012. Citrus aurantium flavonoids inhibit adipogenesis through the Akt signaling pathway in 3T3-L1 cells. BMC Complement Altern Med 12: 31-40. https://doi.org/10.1186/1472-6882-12-31
  6. Cao Z, Umek RM, McKnight SL. 1991. Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev 5: 1538-1552. https://doi.org/10.1101/gad.5.9.1538
  7. Ejaz S, Ejaz A, Matsuda K, Lim CW. 2006. Limonoids as cancer chemopreventive agents. J Sci Food Agric 86: 339-345. https://doi.org/10.1002/jsfa.2396
  8. Nichols LA, Jackson DE, Manthey JA, Shukla SD, Holland LJ. 2011. Citrus flavonoids repress the mRNA for stearoyl-CoA desaturase, a key enzyme in lipid synthesis and obesity control, in rat primary hepatocytes. Lipids Health Dis 10: 36-40. https://doi.org/10.1186/1476-511X-10-36
  9. Peterson J, Dwyer J. 1998. Flavonoids: dietary occurrence and biochemical activity. Nutr Res 18: 1995-2018. https://doi.org/10.1016/S0271-5317(98)00169-9
  10. Tripoli E, Guardia ML, Giammanco S, Majo DD, Giammanco M. 2007. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem 104: 466-479. https://doi.org/10.1016/j.foodchem.2006.11.054
  11. Fuhr U, Kummert AL. 1995. The fate of naringin in humans: A key to grapefruit juice-drug interactions? Clin Pharmacol Ther 58: 365-373. https://doi.org/10.1016/0009-9236(95)90048-9
  12. Santamaria RI, Reyes-Duarte MD, Barzana E, Fernando D, Gama FM, Mota M, Lopez-Munguia A. 2000. Selective enzyme-mediated extraction of capsaicinoids and caratenoids from chili guajillo puya (Capsicum annum L.) using ethanol as solvent. J Agric Food Chem 48: 3063-3067. https://doi.org/10.1021/jf991242p
  13. Seo JY, Lee JH, Kim NW, Her E, Chang SH, Ko NY, Yoo YH, Kim JW, Seo DW, Han JW, Kim YM, Choi WS. 2005. Effect of a fermented ginseng extract, BST204, on the expression of cyclooxygenase-2 in murine macrophages. Int Immunopharmacol 5: 929-936. https://doi.org/10.1016/j.intimp.2005.01.008
  14. Yang G, Park D, Lee J, Song BS, Jeon TH, Kang SJ, Jeon JH, Shin S, Jeong H, Lee H, Kim Y. 2011. Suppressive effects of red ginseng preparations on SW480 colon cancer xenografts in mice. Food Sci Biotechnol 20: 1649-1653. https://doi.org/10.1007/s10068-011-0227-y
  15. Dallas C, Gerbi A, Tenca G, Juchaux F, Bernard F. 2008. Lipolytic effect of a polyphenolic citrus dry extract of red orange, grapefruit, orange (SINETROL) in human body fat adipocytes. Mechanism of action by inhibition of cAMPphosphodiesterase (PDE). Phytomedicine 15: 783-792. https://doi.org/10.1016/j.phymed.2008.05.006
  16. Kanda K, Nichi K, Kadota A, Nishimoto S, Liu MC, Sugahara T. 2012. Nobiletin suppresses adipocyte differentiation of 3T3-L1 cells by an insulin and IBMX mixture induction. Biochim Biophys Acta 1820: 461-468. https://doi.org/10.1016/j.bbagen.2011.11.015
  17. Kang SI, Shin HS, Kim HM, Hong YS, Yoon SA, Kang SW, Kim JH, Kim MH, Ko HC, Kim SJ. 2012. Immature Citrus sunki peel extract exhibits anti-obesity effects by ${\beta}$-oxidation and lipolysis in high-fat diet-induced obese mice. Biol Pharm Bull 35: 223-230. https://doi.org/10.1248/bpb.35.223
  18. Lin FT, Lane MD. 1994. CCAAT/enhancer binding protein alpha is sufficient to initiate the 3T3-L1 adipocyte differentiation program. Proc Natl Acad Sci U S A 91: 8757-8761. https://doi.org/10.1073/pnas.91.19.8757
  19. Cowherd RM, Lyle RE, McGehee RE Jr. 1999. Molecular regulation of adipocyte differentiation. Semin Cell Dev Biol 10: 3-10. https://doi.org/10.1006/scdb.1998.0276
  20. Park J, Kim JB. 2002. Molecular insights into fat cell differentiation and functional roles of adipocytokines. Endocrinol Metab 17: 1-9.
  21. Kim JB, Spiegelman BM. 1996. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev 10: 1096-1107. https://doi.org/10.1101/gad.10.9.1096
  22. Rayalam S, Della-Fera MA, Baile CA. 2008. Phytochemicals and reguation of the adipocyte life cycle. J Nutr Biochem 19: 717-726. https://doi.org/10.1016/j.jnutbio.2007.12.007
  23. Liu L, Shan S, Zhang K, Ning ZQ, Lu XP, Cheng YY. 2008. Naringenin and hesperetin, two flavonoids derived from Citrus aurantium up-regulate trascription of adiponectin. Phytother Res 22: 1400-1403. https://doi.org/10.1002/ptr.2504
  24. Akune T, Ohba S, Kamekura S, Yamaguchi M, Chung UI, Kubota N, Terauchi Y, Harada Y, Azuma Y, Nakamura K, Kadowaki T, Kawaguchi H. 2004. $PPAR{\gamma}$ insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest 113: 846-855. https://doi.org/10.1172/JCI200419900
  25. Zechner R, Kienesberger PC, Haemmerle G, Zimmermann R, Lass A. 2009. Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. J Lipid Res 50: 3-21.
  26. Hazz S, Fontaine KR, Cutter G, Limdi N, Perumean-Chaney S, Allison DB. 2006. Citrus aurantium and synephrine alkaloids in the treatment of overweight and obesity: an update. Obes Rev 7: 79-88. https://doi.org/10.1111/j.1467-789X.2006.00195.x
  27. Mercader J, Wanecq E, Chen J, Carpene C. 2011. Isopropylnorsynephrine is a stronger lipolytic agent in human adipocytes than synephrine and other amines present in Citrus aurantium. J Physiol Biochem 67: 443-452. https://doi.org/10.1007/s13105-011-0078-2

Cited by

  1. Potential of Fisetin as a Nutri-cosmetics Material through Evaluating Anti-oxidant and Anti-adipogenic Activities vol.14, pp.1, 2016, https://doi.org/10.20402/ajbc.2016.0003
  2. Inhibition of Pancreatic Lipase Activity and Adipocyte Differentiation in 3T3-L1 Cells Treated with Purple Corn Husk and Cob Extracts vol.33, pp.2, 2018, https://doi.org/10.13103/JFHS.2018.33.2.131
  3. Flavonoids over women’s health: a literature review vol.19, pp.2, 2018, https://doi.org/10.12729/jbtr.2018.19.2.032
  4. 올레산 유도 비알코올성 지방간세포에서 자색옥수수 색소 1호 포엽과 속대 추출물의 지질 축적 억제 효과 vol.35, pp.1, 2014, https://doi.org/10.13103/jfhs.2020.35.1.93
  5. 감귤피 효소적 추출물의 지방세포에서의 항비만 효과 vol.53, pp.2, 2021, https://doi.org/10.9721/kjfst.2021.53.2.149