DOI QR코드

DOI QR Code

Effect of Ash Content on Unburned Carbon and NOx Emission in a Drop Tube Furnace

DTF 를 이용한 석탄 회분 함량에 따른 미연분 및 NOx 배출 특성 연구

  • 김상인 (부산대학교 기계공학부) ;
  • 이병화 (부산대학교 화력발전에너지분석기술센터) ;
  • 안기주 (부산대학교 기계공학부) ;
  • 김만철 ((주)한국남부발전) ;
  • 김승모 (부산대학교 화력발전에너지분석기술센터) ;
  • 전충환 (부산대학교 기계공학부)
  • Received : 2014.02.25
  • Accepted : 2014.08.24
  • Published : 2014.12.01

Abstract

Four coal sources that had different ash contents were evaluated in a drop tube furnace (DTF). Combustion experiments were conducted by using several sources with different particle sizes and excess air ratios under air-staging conditions to determine the optimized combustion conditions of high-ash coal, with an emphasis on the combustion efficiency and NOx emissions. The results show that the higher ash content results in a large amount of carbon remaining unburned, and that this effect is dominant when the largest particle size is used. Furthermore, the ash content of coal does affect the Char-NOx concentration, which decreases with the particle size. The results of this study suggest that an air-staged system can be useful to reduce the NOx emissions of high-ash coal and that control of the air stoichiometric ratio of the primary combustion zone (SR1) is effective for reducing NOx emissions, especially by considering unburned carbon contents.

본 연구는 고회분탄의 최적화된 연소 조건을 알아보기 위해 회분 함량이 각기 다른 네 종류 석탄의 연소시 배출되는 NOx및 미연분 특성을 알아보았다. 실험은 DTF(Drop Tube Furnace)를 통해서 다양한 입자크기조건 및 공기다단방식을 도입하여 수행하였다. 결과로 회분의 함량이 증가할수록 미연분이 증가하며, 입자크기가 증대될수록 미연분에 대한 회분의 영향이 명확해짐을 확인하였다. 또한, 회분의 함량이 증가할수록 Char-NOx가 감소하며, 입자크기가 감소할수록 NOx의 배출이 감소하는 것을 확인하였다. 본 연구는 고회분탄의 NOx를 저감하는 방법으로 공기다단방식의 적용을 제안하며 전단 연소 영역의 공기과잉률 변화를 통한 최적화된 연소조건을 제시하였다.

Keywords

References

  1. Biswas, S., Choudhury, N., Sarkar, P., Mukherjee, A., Sahu, S. G. and Boral, P., 2006, "Studies on the Combustion Behavior of Blends of Indian Coals by TGA and Drop Tube Furnace," Fuel Processing Technology, Vol. 87, pp. 191-199. https://doi.org/10.1016/j.fuproc.2005.05.002
  2. Ikeda, M., Makino, H., Morinaga, K., Higashiyama, K. and Kozai, Y., 2003, "Emission Characteristics of NOx and Unburned Carbon in Fly Ash During Combustion of Blends of Bituminous/Sub-bituminous Coals," Fuel, Vol. 82, pp. 1851-1857. https://doi.org/10.1016/S0016-2361(03)00170-4
  3. Kurose, R., Ikeda, M. and Makino, H., 2001, " Combustion Characteristics of High Ash Coal in a Pulverized Coal Combustion," Fuel, Vol. 80, pp. 1447-1455. https://doi.org/10.1016/S0016-2361(01)00020-5
  4. Yan, R., Zheng, C., Wang, Y. and Zeng, Y., 2003, "Evaluation of Combustion Characteristics of Chinese High-ash Coals," Energy Fuels, Vol. 17, pp. 1522-1527. https://doi.org/10.1021/ef030040z
  5. An, K. J., Lee, B. H., Kim, S. I., Kim, M. C., Kim, S. M. and Jeon, C. H., 2013, "Char Oxidation Characteristics of High Ash Coal in Drop Tube Furnace," Trans. Korean Soc. Mech. Eng. B, Vol. 37, No.4, pp. 405-413. https://doi.org/10.3795/KSME-B.2013.37.4.405
  6. Lee, B. H., Kim, S. G., Song, J. H., Chang, Y. J. and Jeon, C. H., 2011, "Influence of Coal Blending Methods on Unburned Carbon and NO Emissions in a Drop-tube Furnace," Energy&Fuels, Vol. 25, pp. 5055-5062.
  7. De Soete GG., 1975, Fifteenth Symposium (international) on Combution, The Combustion Institute, Pittsburgh, PA, p.1093.
  8. EPA., 2004, "Summary of NOx Control Technologies and Their Availability and Extent of Application," US Environmental Protection Agency, EPA-450/3-92-004, pp. 8-12.
  9. Spliethoff, H., Greul, U., Rudiger, H., Klaus, R. S., 1995, "Basic Effects on NOx Emissions in Air Staging and Reburning at a Bench-scale Test Facility," Fuel, Vol. 75, pp. 560-564.
  10. Ma, W. J., Fan, W. J., Hou, M. Y. and Yang, M. L., 2004, "Influences of Air Staged Proportion on Combustion and Exhaust Emissions," J. Combust. Sci. Technol., Vol. 10, pp. 345-349 (in Chinese).
  11. Coda, B., Kluger, F., Fortsch, D. and Spliethoff., H., 1998, "Coal-Nitrogen Release and NOx Evolution in Air-Saged Cmbustion," Energy Fuels, Vol. 12, pp. 1322-1327. https://doi.org/10.1021/ef980097z
  12. Mana, C. K., Gibbins, J. R., Witkampb, J. G. and Zhang, J., 2005, "Coal Caracterisation for NOx Prediction in Air-Staged Combustion of Pulverised Coals," Fuel, Vol. 84, pp. 2190-2195. https://doi.org/10.1016/j.fuel.2005.06.011
  13. Backreedy, R.I., Jones, J.M., Ma, L., Pourkashanian, M., Williams, A. and Arenillas, A., 2005, "Prediction of Unburned Carbon and NOx in a Tangentially Fired Power Station Using Single Coals and Blends," Fuel, Vol. 84, pp. 2196-2203. https://doi.org/10.1016/j.fuel.2005.05.022
  14. Li, S., Xu, T., Hui, S., Zhou, Q. and Tan, H., 2009, "Optimization of Air Staging in a 1 MW Tangentially Fired Pulverized Coal Furnace," Fuel Processing Technology, Vol. 90, pp. 99-106. https://doi.org/10.1016/j.fuproc.2008.08.005
  15. Wang, J., Fan, W., Li, Y., Xiao, M., Wang, K. and Ren, P., 2012, "The Effect of Air Staged Combustion on NOx Emissions in Dried Lignite Combustion," Energy, Vol. 37, pp. 725-736. https://doi.org/10.1016/j.energy.2011.10.007
  16. Lee, B. H., Song, J. H., Kang, G. T., Chang, Y. J. and Jeon, C. H., 2009, "Determine of Char Oxidation Rates with Different Analytical Methods," Trans. Korean Soc. Mech. Eng. B, Vol. 33, pp. 876. https://doi.org/10.3795/KSME-B.2009.33.11.876
  17. Makino, H. and Kimoto, M., 1994, "Low NOx Combustion Technology in Pulverized Coal Combustion," Kagaku Kogaku Ronbunshu, Vol. 4, No. 20, pp. 747-757.
  18. Tsuji, H., Shirai, H., Matsuda, H. and Rajoo, P. 2011, "Emission Characteristics of NOx and Unburned Carbon in Fly Ash on High-ash Coal Combustion," Fuel, Vol. 90, pp. 850-853. https://doi.org/10.1016/j.fuel.2010.09.053
  19. Spliethoff, H., Greul, U., Rudiger, H. and Hein, KRG., 1996, "Basic Effects on NOx Emissions in Air Staging and Reburning at a Bench-scale Test Facility," Fuel, Vol. 75, pp. 560-564. https://doi.org/10.1016/0016-2361(95)00281-2

Cited by

  1. Study on the Unburned Carbon and NOx emission of High Moisture Coal vol.25, pp.4, 2016, https://doi.org/10.5855/ENERGY.2016.25.4.053