DOI QR코드

DOI QR Code

Seismic Fragility Analysis of Reinforced Concrete Bridge Piers According to Damage State

철근콘크리트 교량 교각의 손상상태에 따른 지진취약도 해석

  • 전정문 (배재대학교 건설환경철도공학과) ;
  • 신재관 (배재대학교 건설환경철도공학과) ;
  • 심재엽 (배재대학교 건설환경철도공학과) ;
  • 이도형 (배재대학교 건설환경철도공학과)
  • Received : 2014.07.02
  • Accepted : 2014.10.21
  • Published : 2014.12.01

Abstract

In the present study, a total of 275 tested specimens (149 of non-seismically designed and 126 of seismically designed) for reinforced concrete bridge piers with circular section have been investigated in order to suggest drift limits probabilistically according to damage states in seismic fragility analysis. Thus, quantitative damage states of the piers have been evaluated depending on details of the piers. Nonlinear time-history analyses have been conducted for a damaged bridge in terms of using the suggested drift limits. Then, seismic fragility analysis for a reinforced concrete bridge structure has been conducted using both suggested and existing drift limits. Comparative analyses have revealed that median values by the suggested limits is smaller than those by the existing limits. This implies that seismic performance of the structure can be overestimated when the existing limits are used.

본 연구에서는 지진취약도 해석에 사용되는 손상상태에 따른 수평변위한계값을 구조물의 항복 및 극한변위에 따라 확률통계적으로 새롭게 제안하기 위하여 국내외에서 실험된 원형단면의 철근콘크리트 교각 총 275본(비내진 149본, 내진 126본)의 실험데이터를 조사하였고 각 상세에 따른 교각의 정량적인 손상상태를 평가하였다. 이후 제안된 수평변위한계값에 따른 실제 교량구조물에 대한 비선형 시간이력해석을 수행한 후 그 결과를 토대로 지진취약도 해석을 통해 기존의 제안된 수평변위한계값들과의 차이를 비교분석하였다. 비교분석 결과, 제안된 값에 의한 중앙값이 기존의 값에 의한 중앙값보다 작게 나타났다. 이는 기존의 수평변위한계값으로 지진취약도 해석시 구조물의 성능을 과다 평가할 수도 있음을 나타낸다.

Keywords

References

  1. Broderick, B. M. and Elnashai, A. S. (1995). "Analysis of the failure of interstate 10 freeway ramp during the northridge earthquake of 17 January 1994." Earthquake Engineering and Structural Dynamics, Vol. 24, pp. 188-208.
  2. Broderick, B. M., Elnashai, A. S. and Izzuddin, B. A. (1994). "Observations on the effect of numerical dissipation on the nonlinear dynamic response of structural systems." Engineering Structures, Vol. 16, pp. 51-62. https://doi.org/10.1016/0141-0296(94)90104-X
  3. Dutta, A. (1999). On energy based seismic analysis and design of highway bridges, Ph.D. Thesis, State University of New York at Buffalo.
  4. Elnashai, A. S., Papanikolaou, V. and Lee, D. H. (2001). ZeusNL - A program for inelastic dynamic analysis of structures, MAE Center, University of Illinois at Urbana-Champaign, USA.
  5. HAZUS99 (1999). User's manual, Washington, D. C. : Federal Emergency Management Agency.
  6. Hilber, H. M., Hughes, T. J. R. and Taylor, R. L. (1977). "Improved numerical dissipation for time-integration algorithms in structural dynamics." Earthquake Engineering and Structural Dynamics, Vol. 5, pp. 283-292. https://doi.org/10.1002/eqe.4290050306
  7. Jeon, J. M. (2013). Damage evaluation of RC bridge piers by seismic fragility analyses, Ph.D. Thesis, University of Paichai
  8. Kim, J. C., Byeon, J. S. and Shin, S. B. (2008). "Seismic fragility analysis of a FCM bridge considering soil properties." Journal of the Earthquake Engineering Society of Korea, Vol. 12, No. 3, pp. 37-44. https://doi.org/10.5000/EESK.2008.12.3.037
  9. Kim, S. H., Yi, J. H. and Kim, H. K. (2004). "Evaluation of capacity spectrum methods for seismic fragility analysis of bridges." Journal of the Earthquake Engineering Society of Korea, Vol. 8, No. 1, pp. 67-76. https://doi.org/10.5000/EESK.2004.8.1.067
  10. Koh, H. M., Lee, J. H. and Kang, J. W. (2003). "Seismic damage evaluation of reinforced concrete pier based on a plastic damage model." Journal of the Korean Society of Civil Engineers, Vol. 23, No. 5, pp. 1029-1039.
  11. Korea Concrete Institute (2012). Concrete design code and commentary, Kimoondang Publishing Company (in Korean).
  12. Lanczos, C. (1950). "An iteration mothod for the solution of the eigenvalue problem of linear differential and interral operators." Journal of Research of the National Bureau of Standards 45, pp. 255-282. https://doi.org/10.6028/jres.045.026
  13. Lee, D. H. and Elnashai, A. S. (2002). "Inelastic seismic analysis of RC bridge piers including flexure shear-axial interaction." Structural Engineering and Mechanics, An International Journal, Vol. 13, No. 3, pp. 241-260. https://doi.org/10.12989/sem.2002.13.3.241
  14. Martines-Rueda, J. E. and Elnashai, A. S. (1997). "Confined concrete model under cycling loading." Materials and Structures, Vol. 30, pp. 139-147. https://doi.org/10.1007/BF02486385
  15. Newmark, N. M. (1959). "A method for computation for structural dynamics." Journal of the Engineering Mechanics Division, ASCE, Vol. 85, No. 3, pp. 67-94.
  16. Park, R. (1991). "Ductility of structural concrete." IABSE Colloquium, Stuttgart.
  17. Priestley, M. J. N., Seible, F. and Calvi, G. M. (1996). Seismic design and retrofit of bridges, John Wiley & Sons Inc., New York.
  18. Shinozuka, M., Feng, M. Q., Kim, H. K. and Kim, S. H. (2000). "Nonlinear static procedure for fragility curve development." Journal of Engineering Mechanics, Vol. 126, No. 12, pp. 1287-1295. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1287)
  19. The SAC Steel Project. (2002). Suites of earthquake ground motions for analysis of steel moment frame structures, Available at: http://nisee.berkeley.edu/data/strong_motion/sacsteel/ground_motions.html.
  20. Yi, J. H., Kim, S. H., Yun, C. B. and Kushivama, S. (2004). "PDF interpolation technique for seismic fragility analysis." Journal of the Korean Society of Civil Engineers, Vol. 24, No. 2A, pp. 391-399.