DOI QR코드

DOI QR Code

PVP-assisted Synthesis of TiO2 Nanospheres and their Application to the Preparation of Superhydrophobic Surfaces

  • Received : 2015.10.24
  • Accepted : 2015.10.31
  • Published : 2015.11.30

Abstract

Enhancement of the surface hydrophobicity of polydimethylsiloxane (PDMS) thin films deposited on substrates covered with titanium dioxide ($TiO_2$) nanospheres was studied. First, a low-temperature solution-phase method using polyvinylpyrrolidone (PVP) as a surface capping agent and a water/dimethylformamide (DMF) mixture as the reaction medium was used to synthesize monodisperse $TiO_2$ nanospheres. It was possible to easily control hydrolysis rate of the Ti-precursors and the size of the synthesized nanospheres by varying the amount of PVP and the volume ratio of the solvent mixture. Spray coating of the synthesized $TiO_2$ nanospheres under the PDMS film increased the water contact angle of the film surface to $150.3^{\circ}$. This simple treatment can modify the surface morphology at a nanometer scale without any long or complicated nanoprocess; hence, the surface enters the superhydrophobic Cassie-Baxter regime.

Keywords

References

  1. M. Gratzel, Nature, 414 (2001) 338. https://doi.org/10.1038/35104607
  2. M. R. Hoffmann, S. T. Martin, W. Y. Choi, and D. W. Bahnemann, Chem. Rev., 95 (1995) 69. https://doi.org/10.1021/cr00033a004
  3. A. L. Linsebigler, G. Lu, and J. T. Yates Jr., Chem. Rev., 95 (1995) 735. https://doi.org/10.1021/cr00035a013
  4. M. Millis and S. Le Hunte, J. Photochem. Photobiol A, 108 (1997) 1. https://doi.org/10.1016/S1010-6030(97)00118-4
  5. S. Wang, Y. Ding, S. Xu, Y. Zhang, G. Li, L. Hu, and S. Dai, Chem. Eur. J., 20 (2014) 4916. https://doi.org/10.1002/chem.201304963
  6. D. Chen, F. Huang, Y-B. Cheng, and R. A. Caruso, Adv. Mater., 21 (2009) 2206. https://doi.org/10.1002/adma.200802603
  7. J. T. Park, D. K. Roh, R. Patel, E. Kim, D. Y. Ryu, and J. H. Kim, J. Mater. Chem., 20 (2010) 8521. https://doi.org/10.1039/c0jm01471k
  8. X. Wu, G. Q. Lu, and L. Wang, Energy Environ. Sci., 4 (2011) 3565. https://doi.org/10.1039/c0ee00727g
  9. M. Sasidharan, K. Nakashima, N. Gunawardhana, T. Yokoi, M. Inoue, S. Yusa, M. Yoshino, and T. Tatsumi, Chem. Comm., 47 (2011) 6921 https://doi.org/10.1039/c1cc11902h
  10. T. Sun, L. Feng, X. Gao, and L. Jiang, Acc. Chem. Res., 38 (2005) 644. https://doi.org/10.1021/ar040224c
  11. T. Darmanin, M. Nicolas, and F. Guittard, Phys. Chem. Chem. Phys., 10 (2008) 4322. https://doi.org/10.1039/b804617d
  12. A. Pakdel, C. Zhi, Y. Bando, T. Nakayama, and D. Goldberg, ACS Nano, 5 (2011) 6507. https://doi.org/10.1021/nn201838w
  13. X. Yang, J. Zhuang, X. Li, D. Chen, G. Ouyang, Z. Mao, Y. Han, Z. He, C. Liang, M. Wu, and J. C. Yu, ACS Nano, 3 (2009) 1212. https://doi.org/10.1021/nn900084e
  14. M. J. Lee, N. Y. Lee, J. R. Lim, J. B. Kim, M. Kim, H. K. Baik, and Y. S. Kim, Adv. Mater., 18 (2006) 3115. https://doi.org/10.1002/adma.200601268
  15. M. T. Khorasani and H. Mirzadeh, J. Appl. Polym. Sci., 91 (2004) 2042. https://doi.org/10.1002/app.13355
  16. M. Jin, X. Feng, J. Xi, J. Zhai, K. Cho, L. Feng, and L. Jiang, Macromol Rapid Commun., 26 (2005) 1805. https://doi.org/10.1002/marc.200500458
  17. K. Tadanaga, J. Morinaga, A. Matsuda, and T. Minami, Chem. Mater., 12 (2000) 590. https://doi.org/10.1021/cm990643h
  18. D. Oner and T. J. McCarthy, Langmuir, 16 (2000) 7777. https://doi.org/10.1021/la000598o
  19. D. Hong, I. Ryu, H. Kwon, J-J. Lee, and S. Yim, Phys. Chem. Chem. Phys., 15 (2013) 11862. https://doi.org/10.1039/c3cp51833g
  20. S. M. M. Ramosa, E. Charlaixa, and A. Benyagoub, Surf. Sci., 540 (2003) 355. https://doi.org/10.1016/S0039-6028(03)00852-5
  21. J. Park, Y. S. Kim, and P. Hammond, Nano Lett., 5 (2005) 1347. https://doi.org/10.1021/nl050592p
  22. T. W. Odom, V. R. Thalladi, J. C. Love, and G. M. Whitesides, J. Am. Chem. Soc., 124 (2002) 12112. https://doi.org/10.1021/ja0209464
  23. K. Lee, S. Lyu, S. Lee, Y. S. Kim, and W. Hwang, Appl. Surf. Sci., 256 (2010) 6729. https://doi.org/10.1016/j.apsusc.2010.04.081
  24. J. Han and W. Gao, J. Electron. Mater., 38 (2009) 601. https://doi.org/10.1007/s11664-008-0615-0
  25. J. Kim, M. Kim, M. J. Lee, J. S. Lee, K. Shin, and Y. S. Kim, Adv. Mater., 21 (2009) 4050. https://doi.org/10.1002/adma.200803243
  26. J. Zhang, J. Liu, Q. Peng, X. Wang, and Y. Li, Chem. Mater., 18 (2006) 867. https://doi.org/10.1021/cm052256f
  27. Y. Zhang, P. Yang, and L. Zhang, J. Nanopart. Res., 15 (2013) 1329. https://doi.org/10.1007/s11051-012-1329-z
  28. M. Cao, C. Li, B. Zhang, J. Huang, L. Wang, and Y. Shen, J. Alloys Comp., 622 (2015) 695. https://doi.org/10.1016/j.jallcom.2014.10.164
  29. Y-J. Song, M. Wang, X-Y. Zhang, J-Y. Wu, and T. Zhang, Nanoscale Res. Lett., 9 (2014) 17. https://doi.org/10.1186/1556-276X-9-17
  30. R. N. Wenzel, Ind. Eng. Chem., 28 (1936) 988. https://doi.org/10.1021/ie50320a024
  31. A. B. D. Cassie and S. Baxter, Trans. Faraday Soc., 40 (1944) 546. https://doi.org/10.1039/tf9444000546
  32. Z. Yoshimitsu, A. Nakajima, T. Watanabe, and K. Hashimoto, Langmuir, 18 (2002) 5818. https://doi.org/10.1021/la020088p