DOI QR코드

DOI QR Code

Fabrication of Single Layer Anti-reflection Thin Film by Sol-gel Method

Sol-gel법에 의한 단층 반사 방지막 제조

  • Park, Jong-Guk (Optic & Display Materials Team, Korea Institute of Ceramic Engineering & Technology) ;
  • Jeon, Dae-Woo (Optic & Display Materials Team, Korea Institute of Ceramic Engineering & Technology) ;
  • Lee, Mi-Jai (Optic & Display Materials Team, Korea Institute of Ceramic Engineering & Technology) ;
  • Lim, Tea-Young (Optic & Display Materials Team, Korea Institute of Ceramic Engineering & Technology) ;
  • Hwang, Jonghee (Optic & Display Materials Team, Korea Institute of Ceramic Engineering & Technology) ;
  • Bae, Dong-Sik (Department of Advanced Materials Science and Engineering, Changwon National University) ;
  • Kim, Jin-Ho (Optic & Display Materials Team, Korea Institute of Ceramic Engineering & Technology)
  • 박종국 (한국세라믹기술원 광디스플레이소재팀) ;
  • 전대우 (한국세라믹기술원 광디스플레이소재팀) ;
  • 이미재 (한국세라믹기술원 광디스플레이소재팀) ;
  • 임태영 (한국세라믹기술원 광디스플레이소재팀) ;
  • 황종희 (한국세라믹기술원 광디스플레이소재팀) ;
  • 배동식 (국립창원대학교 메카트로닉스대학 나노신소재공학부) ;
  • 김진호 (한국세라믹기술원 광디스플레이소재팀)
  • Received : 2015.11.16
  • Accepted : 2015.11.24
  • Published : 2015.12.01

Abstract

Anti-reflective (AR) thin film was fabricated on a glass substrate by sol-gel method. The coating solution was synthesized with TEOS (tetraethlyorthosilicate) and poly ethylene glycol (PEG, 4.0 wt%). As the withdrawal speed of coating was changed from 0.1 mm/sec to 0.3 mm/sec, the thickness and refractive index of prepared thin films were changed. The reflectance and transmittance of coating glass fabricated by the withdrawal speed of 0.1 mm/sec were 0.62% and 95.0% in visible light range. The refractive index and thickness of single layer thin film were n= 1.29 and ca. 99.0 nm.

Keywords

References

  1. D. Bouhafs, A. Moussi, A. Chikouche, and J. M. Ruiz, Sol. Energy Mater. Solar Cells, 52, 79 (1998). [DOI: http://dx.doi.org/10.1016/S0927-0248(97)00273-0]
  2. A. Combert, W. Glaubitt, K. Rose, J. Dreibholz, B. Blasi, A. Heinzel, D. Sporn, W. Doll, and V. Witter, Solar Cells, 63, 357 (2000).
  3. M. C. Bautista and A. Morales, Sol. Energy Mater. Solar Cells, 80, 217 (2003). [DOI: http://dx.doi.org/10.1016/j.solmat.2003.06.004]
  4. C. J. Brinker and G. W. Scherer, Sol-Gel Science (Academic Press, Lodon, 1990).
  5. P. Chrysicopoulou, D. Davazoglou, Chr. Trapalis, and G. Kordas, Thin Solid Films, 323, 188 (1998). [DOI: http://dx.doi.org/10.1016/S0040-6090(97)01018-3]
  6. M. Takeuchi, T. Itoh, and H. Nagasaka, Thin Solids Films, 51, 83 (1978). [DOI: http://dx.doi.org/10.1016/0040-6090(78)90215-8]
  7. K. S. Yeung and Y. W. Lam, Thin Solids Films, 109, 169 (1983). [DOI: http://dx.doi.org/10.1016/0040-6090(83)90136-0]
  8. J. H. Kim and S. Shiratori, J. Appl. Phys., 44, 7588 (2005). [DOI: http://dx.doi.org/10.1143/JJAP.44.7588]
  9. Y. Tsuge, J. H. Kim, Y. Sone, O. Kuwaki, and S. Shiratori, Thin Solid Films, 516, 2463 (2008). [DOI: http://dx.doi.org/10.1016/j.tsf.2007.04.084]
  10. H. J. Kim, K. J. Jeong, and D. S. Bae. J. Mater. Res., 22, 249 (2012).
  11. G. Decher, J. D. Hong, and J. Schmitt, Thin Soild Films, 831, 210/211 (1992).
  12. B. A. Moys, Thin Solid Films, 21, 145 (1974). [DOI: http://dx.doi.org/10.1016/0040-6090(74)90097-2]
  13. C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, J. Non-Cryst. Solids, 216, 77 (1997). [DOI: http://dx.doi.org/10.1016/S0022-3093(97)00175-0]
  14. J. Zhao and M. A. Green, IEEE Trans. Electron Dev., 38, 1925 (1991). [DOI: http://dx.doi.org/10.1109/16.119035]