DOI QR코드

DOI QR Code

FDI performance Analysis of Inertial Sensors on Multiple Conic Configuration

다중 원추형으로 배치된 관성센서의 FDI 성능 분석

  • Kim, Hyun Jin (Dept. of Mechanical & Aerospace Engineering, Seoul National University) ;
  • Song, Jin Woo (Dept. of Mechanical & Aerospace Engineering, Seoul National University) ;
  • Kang, Chul Woo (Automation and Systems Research Institute, Seoul National University) ;
  • Park, Chan Gook (Dept. of Mechanical & Aerospace Engineering, Seoul National University)
  • Received : 2015.05.05
  • Accepted : 2015.10.23
  • Published : 2015.11.01

Abstract

Inertial sensors are important components of navigation system whose performance and reliability can be improved by specific sensor arrangement configuration. For the reliability of the system, Fault Detection and Isolation (FDI) is conducted by comparing each signal of arranged sensors and many arrangement configuration were suggested to optimize FDI performance of the system. In this paper, multiple conic configuration is suggested with optimal navigation condition and its FDI performance is analyzed by established Figure Of Merit (FOM) under the condition for navigation optimality. From FOM comparison, the multiple conic configuration is superior to former one in point of FDI.

관성센서는 항법 시스템에서 매우 중요한 요소로서, 다수의 관성 센서를 특정한 기하학적 형상으로 배치하여 시스템의 성능과 신뢰도를 향상시킬 수 있다. 이 때 시스템 신뢰도 향상을 위한 고장검출 및 분리는 배치된 각 센서의 신호를 비교하여 이루어지며, 몇 가지 형태에 대한 최적 조건이 알려져 있다. 본 논문에서는 다중원추 배치형상을 제시하여 항법 최적성능을 위한 조건을 정리하고, 이러한 조건 하에서 기존에 정의된 성능지표를 사용하여 고장검출 및 분리 성능을 분석하였다. 성능지표 비교 결과, 다중 원추배치 형상이 이전에 제시된 다른 형상들보다 고장검출 및 분리 성능 측면에서 더 뛰어나다는 것을 확인하였다.

Keywords

References

  1. Cho, S. Y., Park, C. G. and Lee, D. H., "Calibration of Redundant IMU with Low-grade Inertial Sensors," Journal of the Korean Society for Aeronautical & Space Sciences, vol. 32, no. 10, 2004, pp.418-426.
  2. Lee, W. and Park, C. G., "A Fault Detection Method of Redundant IMU Using Modified Principal Component Analysis," International Journal of Aeronautical and Space Sciences, vol. 13, Sep. 2012, pp.398-404. https://doi.org/10.5139/IJASS.2012.13.3.398
  3. Lee, W. and Park, C. G., "Double Fault Detection of Cone-Shaped Redundant IMUs Using Wavelet Transformation and EPSA," Sensors, vol. 14, Feb. 2014, pp.3428-3444. https://doi.org/10.3390/s140203428
  4. Wilcox, J. C., "Competitive Evaluation of Failure Detection Algorithms for Strapdown Redundant Inertial Instruments," Journal of Spacecraft, Vol. 11, No. 7, Jul. 1974, pp.525-530. https://doi.org/10.2514/3.62117
  5. Harrison, J. V. and Gai G., "Evaluating Sensor Orientations for Navigation Performance and Failure Detection" IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-13, No. 6, Nov. 1977, pp.631-643. https://doi.org/10.1109/TAES.1977.308504
  6. Kim, J. Y., Yang, C. K. and Shim, D. S., "Navigation and Fault Detection Performance Analysis for INS Redundant Sensor Configurations," Journal of Control, Automation and Systems Engineering, vol. 8, no. 8, Aug. 2002, pp.698-705. https://doi.org/10.5302/J.ICROS.2002.8.8.698
  7. Yoon, S. et al, "Experimental Evaluation of Fault Diagnosis in a Skew-Configured UAV Sensor System," Control Engineering Practice, vol. 19, no. 2, Feb. 2011, pp.153-173.
  8. Kim, K. H. et al, "Optimal IMU Configuration for a SDINS," Proceedings of 2001 International Conference on Control, Automation and Systems, 2011, pp.2130-2133.
  9. Park, S. K. et al, "Optimal Configuration for TDOF Inertial Sensors and FDI Technique", Proceedings of 2004 KSAS Spring Conferences, 2004, pp.283-287.
  10. Jeerage, M. K., "Reliability Analysis of Fault-Tolerant IMU Architectures with Redundant Inertial Sensors," Position, Location and Navigation Symposium (IEEE PLANS '90), 1990, pp.587-592.
  11. Guerrier, S., "Improving Accuracy with Multiple Sensors: Study of Redundant MEMS-IMU/GPS Configurations," Proceedings of the 22nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2009), 2009, pp.3114-3121.
  12. Yuksel, Y. and El-Sheimy, N., "An Optimal Sensor Fusion Method for Skew Redundant Inertial Measurement Units," Journal of Applied Geodesy, vol. 5, no. 2, Aug. 2011, pp.99-115. https://doi.org/10.1515/jag.2011.010
  13. Guerrier, S., Waegli, J. and Victoria, M., "Fault Detection and Isolation in Multiple MEMS-IMUs Configurations", IEEE Transaction on Aerospace and Electronic Systems, Vol. 48, No. 3, 2012, pp.2015-2031. https://doi.org/10.1109/TAES.2012.6237576
  14. Bittner, D. E., Christian, J. A., Bishop, R. H. and May, D., "Fault Detection, Isolation, and Recovery Techniques for Large Clusters of Inertial Measurement Units", Position, Location and Navigation Symposium (IEEE PLANS 2014), 2014, pp.219-229.
  15. Potter, J. E. and Deckert, J. C., "Minimax Failure Detection and Identification in Redundant Gyro and Accelerometer Systems," Journal of Spacecraft and Rockets, vol. 10, no. 4, 1973, pp.236-243. https://doi.org/10.2514/3.27753
  16. R. Hanson and M. Pachter, "Optimal Gyro-Free IMU geometry," AIAA guidance, navigation, and control conference and exhibit, 2005, pp.15-18.
  17. Jin, H. and Zhang, H. Y., "Optimal Parity Vector Sensitive to Designated Sensor fault," IEEE Transactions on Aerospace and Electronic Systems, vol. 35, no. 4, Oct. 1999, pp. 1122-1128. https://doi.org/10.1109/7.805431
  18. Grigorie, T. L. and Botez, R. M., "A New Method to Reduce the Noise of the Miniaturised Inertial Sensors Disposed in Redundant Linear Configurations," Aeronautical Journal, vol. 117, no. 1188, Feb. 2013, pp.111-132. https://doi.org/10.1017/S0001924000007909
  19. Shim, D. S. and Yang, C. K., "Optimal Configuration of Redundant Inertial Sensors for Navigation and FDI performance," Sensors, vol. 10, Jul. 2010, pp.6497-6512. https://doi.org/10.3390/s100706497