DOI QR코드

DOI QR Code

A Study on Improving Electrical Conductivity for Conducting Polymers and their Applications to Transparent Electrodes

전도성 고분자의 전기전도도 향상 연구 및 이를 이용한 투명전극 응용

  • Im, Soeun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Soyeon (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Seyul (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Felix Sunjoo (Department of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Kim, Jung Hyun (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 임소은 (연세대학교 화공생명공학과) ;
  • 김소연 (연세대학교 화공생명공학과) ;
  • 김세열 (연세대학교 화공생명공학과) ;
  • 김선주 (중앙대학교 화학신소재공학부) ;
  • 김중현 (연세대학교 화공생명공학과)
  • Received : 2015.09.30
  • Accepted : 2015.11.15
  • Published : 2015.12.10

Abstract

As the need for next-generation flexible electronics grows, novel materials and technologies that can replace conventional indium tin oxide (ITO) for transparent electrodes have been of great interest. Among them, a conducting polymer, especially poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS) is one of the most promising candidates because it is mechanically flexible, inexpensive, and capable of being processed in solution. Currently, there are a lot of research efforts on enhancing its electrical conductivity to the level of ITO or metal electrodes through chemical and/or physical processing. In this review article, we present various additives and pre-/post-deposition processing methods for improving the electrical conductivity of PEDOT : PSS. Some of representative reports are also introduced, which demonstrated the use of conductivity-enhanced PEDOT : PSS as transparent electrodes in electronics and energy conversion.

투명 전극의 응용분야가 확대되고 시장의 규모가 커짐에 따라 기존 투명 전극 재료인 ITO (Indium Tin Oxide)를 대체할 차세대 투명전극의 개발에 관심이 집중되고 있다. 다양한 후보군 중에서도 대표적인 전도성 고분자인 PEDOT : PSS [poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate)]는 기계적 유연성을 갖고 있으면서도 소재와 공정 상의 가격 경쟁력이 크기 때문에 미래 소자 구현을 위한 투명전극 재료로 주목을 받고 있으며, 현재 PEDOT : PSS의 전기전도도 수준을 ITO나 금속의 수준으로 향상시키기 위해 다양한 화학적/물리적 처리를 통한 기능성 향상에 많은 연구가 진행 중이다. 본 총설에서는 전도성 고분자의 전기 전도도를 향상시키기 위한 다양한 공정 기술에 대한 연구 현황을 짚어보고자 한다. 대표적으로 유기용매, 이온성 액체, 계면활성제 등과 같은 첨가제와 박막에 대한 산 처리 공정, 물리적 인장을 통한 전기전도도 향상 연구를 들 수 있다. 또한 이러한 공정을 적용하여 전도성 고분자 투명 전극을 전자 및 에너지 소자에 응용한 사례도 간략히 소개하고자 한다.

Keywords

References

  1. O. Inganas, Organic photovoltaics: avoiding indium, Nature Photonics, 5, 201-202 (2011). https://doi.org/10.1038/nphoton.2011.46
  2. J. E. Yoo, K. S. Lee, A. Garcia, J. Tarver, E. D. Gomez, K. Baldwin, Y. Sun, H. Meng, T.-Q. Nguyen, and Y.-L. Loo, Directly patternable, highly conducting polymers for broad applications in organic electronics, Proceedings of the National Academy of Sciences, 107, 5712-5717 (2010). https://doi.org/10.1073/pnas.0913879107
  3. R. Po, C. Carbonera, A. Bernardi, F. Tinti, and N. Camaioni, Polymer-and carbon-based electrodes for polymer solar cells: toward low-cost, continuous fabrication over large area, Solar Energy Materials and Solar Cells, 100, 97-114 (2012). https://doi.org/10.1016/j.solmat.2011.12.022
  4. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, 457, 706-710 (2009). https://doi.org/10.1038/nature07719
  5. L. H. Jimison, A. Hama, X. Strakosas, V. Armel, D. Khodagholy, E. Ismailova, G. G. Malliaras, B. Winther-Jensen, R. M. Owens, PEDOT: TOS with PEG: a biofunctional surface with improved electronic characteristics, Journal of Materials Chemistry, 22, 19498-19505 (2012). https://doi.org/10.1039/c2jm32188b
  6. J. Kim, J. Jung, D. Lee, and J. Joo, Enhancement of electrical conductivity of poly (3, 4-ethylenedioxythiophene)/poly (4-styrenesulfonate) by a change of solvents, Synthetic Metals, 126, 311-316 (2002). https://doi.org/10.1016/S0379-6779(01)00576-8
  7. S.-I. Na, G. Wang, S.-S. Kim, T.-W. Kim, S.-H. Oh, B.-K. Yu, T. Lee, and D.-Y. Kim, Evolution of nanomorphology and anisotropic conductivity in solvent-modified PEDOT : PSS films for polymeric anodes of polymer solar cells, Journal of Materials Chemistry, 19, 9045-9053 (2009). https://doi.org/10.1039/b915756e
  8. C. Badre, L. Marquant, A. M. Alsayed, and L. A. Hough, Highly conductive poly(3, 4‐ethylenedioxythiophene) : poly(styrenesulfonate) films using 1-ethyl-3-methylimidazolium tetracyanoborate ionic liquid, Advanced Functional Materials, 22, 2723-2727 (2012). https://doi.org/10.1002/adfm.201200225
  9. F. Atabaki, M. H. Yousefi, A. Abdolmaleki, and M. Kalvandi, poly(3, 4-ethylenedioxythiophene) : poly(Styrenesulfonic acid) (PEDOT : PSS) conductivity enhancement through addition of imidazolium- ionic liquid derivatives, Polymer-Plastics Technology and Engineering (2014).
  10. B. Fan, X. Mei, and J. Ouyang, Significant conductivity enhancement of conductive poly(3, 4-ethylenedioxythiophene) : poly(styrenesulfonate) films by adding anionic surfactants into polymer solution, Macromolecules, 41, 5971-5973 (2008). https://doi.org/10.1021/ma8012459
  11. M. Vosgueritchian, D. J. Lipomi, and Z. Bao, Highly conductive and transparent PEDOT : PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes, Advanced functional materials, 22, 421-428 (2012). https://doi.org/10.1002/adfm.201101775
  12. F. Yan, E. P. Parrott, B. S.-Y. Ung, and E. Pickwell-MacPherson, Solvent Doping of PEDOT/PSS: Effect on Terahertz Optoelectronic Properties and Utilization in Terahertz Devices, The Journal of Physical Chemistry C, 119, 6813-6818 (2015).
  13. D. Alemu, H.-Y. Wei, K.-C. Ho, and C.-W. Chu, Highly conductive PEDOT : PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells, Energy & environmental science, 5, 9662-9671 (2012). https://doi.org/10.1039/c2ee22595f
  14. J.-S. Yeo, J.-M. Yun, D.-Y. Kim, S.-S. Kim, and S.-I. Na, Successive solvent-treated PEDOT : PSS electrodes for flexible ITO-free organic photovoltaics, Solar Energy Materials and Solar Cells, 114, 104-109 (2013). https://doi.org/10.1016/j.solmat.2013.02.031
  15. Y. Xia and J. Ouyang, Significant conductivity enhancement of conductive poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) films through a treatment with organic carboxylic acids and inorganic acids, ACS applied materials & interfaces, 2, 474-483 (2010). https://doi.org/10.1021/am900708x
  16. Y. Xia, K. Sun, and J. Ouyang, Solution‐Processed Metallic Conducting Polymer Films as Transparent Electrode of Optoelectronic Devices, Advanced Materials, 24, 2436-2440 (2012). https://doi.org/10.1002/adma.201104795
  17. J. Ouyang, Solution-processed PEDOT : PSS films with conductivities as indium tin oxide through a treatment with mild and weak organic acids, ACS Appl. Mater. Interfaces, 5, 13082-13088 (2013). https://doi.org/10.1021/am404113n
  18. N. Kim, S. Kee, S. H. Lee, B. H. Lee, Y. H. Kahng, Y. R. Jo, B. J. Kim, and K. Lee, Highly Conductive PEDOT : PSS Nanofibrils Induced by Solution‐Processed Crystallization, Advanced Materials, 26, 2268-2272 (2014). https://doi.org/10.1002/adma.201304611
  19. Y. Y. Lee, J. H. Lee, J. Y. Cho, N. R. Kim, D. H. Nam, I. S. Choi, K. T. Nam, and Y. C. Joo, Stretching‐Induced Growth of PEDOT‐Rich Cores: A New Mechanism for Strain Dependent Resistivity Change in PEDOT : PSS Films, Advanced Functional Materials, 23, 4020-4027 (2013). https://doi.org/10.1002/adfm.201203670
  20. J. J. Lee, S. H. Lee, F. S. Kim, H. H. Choi, and J. H. Kim, Simultaneous enhancement of the efficiency and stability of organic solar cells using PEDOT : PSS grafted with a PEGME buffer layer. Organic Electronics, 26, 191-199 (2015). https://doi.org/10.1016/j.orgel.2015.07.022
  21. M. R. Choi, et al. Soluble Self-Doped Conducting Polymer Compositions with Tunable Work Function as Hole Injection/Extraction Layers in Organic Optoelectronics, Angewandte Chemie, 50, 6274-6277 (2011). https://doi.org/10.1002/anie.201005031
  22. Y. H. Kim, et al. Multicolored Organic/Inorganic Hybrid Perovskite Light Emitting Diodes, Advanced Materials, 27, 1248-1254 (2015). https://doi.org/10.1002/adma.201403751
  23. T. W. Lee, Y. Chung, O. Kwon, and J. J. Park, Self-Organized Gradient Hole Injection to Improve the Performance of Polymer Electroluminescent Devices, Advanced Functional Materials, 17, 390-396 (2007). https://doi.org/10.1002/adfm.200600278
  24. T.-H. Han, et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode, Nature Photonics, 6, 105-110 (2012). https://doi.org/10.1038/nphoton.2011.318
  25. K. G. Lim, et al. Boosting the Power Conversion Efficiency of Perovskite Solar Cells Using Self-Organized Polymeric Hole Extraction Layers with High Work Function, Advanced Materials, 26, 6461-6466 (2014). https://doi.org/10.1002/adma.201401775
  26. Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller Meskamp, and K. Leo, Highly conductive PEDOT : PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells, Advanced Functional Materials, 21, 1076-1081 (2011). https://doi.org/10.1002/adfm.201002290
  27. J. Ha, J. Park, J. Ha, D. Kim, S. Chung, C. Lee, and Y. Hong, Selectively modulated inkjet printing of highly conductive and transparent foldable polymer electrodes for flexible polymer light-emitting diode applications, Organic Electronics, 19, 147-156 (2015). https://doi.org/10.1016/j.orgel.2015.01.017
  28. H. Sirringhaus, T. Kawase, R. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. Woo, High-resolution inkjet printing of all-polymer transistor circuits, Science, 290, 2123-2126 (2000). https://doi.org/10.1126/science.290.5499.2123
  29. M.-W. Lee, M.-Y. Lee, J.-C. Choi, J.-S. Park, and C.-K. Song, Fine patterning of glycerol-doped PEDOT : PSS on hydrophobic PVP dielectric with ink jet for source and drain electrode of OTFTs, Organic Electronics, 11, 854-859 (2010). https://doi.org/10.1016/j.orgel.2010.01.028
  30. M. H. Chung, Large scale patterning of flexible PEDOT : PSS electrode using photolithography process, Graduate School, Yonsei University, Seoul (2015).
  31. S.-F. Tseng, W.-T. Hsiao, K.-C. Huang, and D. Chiang, Electrode patterning on PEDOT : PSS thin films by pulsed ultraviolet laser for touch panel screens, Applied Physics A, 112, 41-47 (2013). https://doi.org/10.1007/s00339-012-7172-3

Cited by

  1. Oxidation of copper nanowire based transparent electrodes in ambient conditions and their stabilization by encapsulation: application to transparent film heaters vol.29, pp.8, 2018, https://doi.org/10.1088/1361-6528/aaa48e
  2. 라만 분광실험을 이용한 전기전도성 PEDOT:PSS 박막에 대한 이온성 액체의 영향 연구 vol.42, pp.1, 2018, https://doi.org/10.7317/pk.2018.42.1.80
  3. Polypyrrole을 증착시킨 Poly(vinyl alcohol) 나노섬유 제조 및 전극용 텍스타일 센서로의 활용 가능성 탐색 -딥 코팅과 현장중합 증착 방식을 중심으로- vol.22, pp.3, 2015, https://doi.org/10.5805/sfti.2020.22.3.386
  4. Nylon 6 Nanofiber Web-Based Signal Transmission Line Treated with PEDOT:PSS and DMSO Treatment vol.14, pp.3, 2021, https://doi.org/10.3390/ma14030498
  5. 스크린 프린팅을 이용한 PEDOT:PSS/AgNW 기반 전기전도성 스마트 텍스타일의 제조 및 신호전달선으로의 적용 vol.23, pp.4, 2015, https://doi.org/10.5805/sfti.2021.23.4.527