DOI QR코드

DOI QR Code

Effect of Tannin and Species Variation on In vitro Digestibility, Gas, and Methane Production of Tropical Browse Plants

  • Gemeda, Belete Shenkute (Department of Animal and wildlife Sciences, University of Pretoria) ;
  • Hassen, A. (Department of Animal and wildlife Sciences, University of Pretoria)
  • Received : 2014.05.06
  • Accepted : 2014.08.23
  • Published : 2015.02.01

Abstract

Nineteen tanniferous browse plants were collected from South Africa to investigate their digestibility, gas production (GP) characteristics and methane production. Fresh samples were collected, dried in forced oven, and ground and analyzed for nutrient composition. In vitro GP and in vitro organic matter digestibility (IVOMD) were determined using rumen fluid collected, strained and anaerobically prepared. A semi-automated system was used to measure GP by incubating the sample in a shaking incubator at $39^{\circ}C$. There was significant (p<0.05) variation in chemical composition of studied browses. Crude protein (CP) content of the species ranged from 86.9 to 305.0 g/kg dry matter (DM). The neutral detergent fiber (NDF) ranged from 292.8 to 517.5 g/kg DM while acid detergent fiber (ADF) ranged from 273.3 to 495.1 g/kg DM. The ash, ether extract, non-fibrous carbohydrate, neutral detergent insoluble nitrogen, and acid detergent insoluble nitrogen and CP were negatively correlated with methane production. Methane production was positively correlated with NDF, ADF, cellulose and hemi-cellulose. Tannin decreased GP, IVOMD, total volatile fatty acid and methane production. The observed low methanogenic potential and substantial ammonia generation of some of the browses might be potentially useful as rumen manipulating agents. However, a systematic evaluation is needed to determine optimum levels of supplementation in a mixed diet in order to attain a maximal depressing effect on enteric $CH_4$ production with a minimal detrimental effect on rumen fermentation of poor quality roughage based diet.

Keywords

References

  1. Animut, G., R. Puchala, A. L. Goetsch, A. K. Patra, T. Sahlu, V. H. Varel, and J. Wells. 2008. Methane emission by goats consuming different sources of condensed tannins. Anim. Feed. Sci. Technol. 144:228-241. https://doi.org/10.1016/j.anifeedsci.2007.10.015
  2. AOAC. 2002. Official Methods of Analysis, 17th eds. Association of Official Analytical Chemists Inc. Arlington, VA, USA.
  3. Beauchemin, K. A., M. Kreuzer, F. O. Mara, and T. A. McAllister. 2008. Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric. 48:21-27. https://doi.org/10.1071/EA07199
  4. Bhatta, R., Y. Uyeno, K. Tajima, A. Takenaka, Y. Yabumoto, I. Nonaka, O. Enishi, and M. Kurihara. 2009. Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. J. Dairy Sci. 92:5512-5522. https://doi.org/10.3168/jds.2008-1441
  5. Engels, E. and F. J. Van der Merwe. 1967. Application of an in vitro technique to South African forages with special reference to the effect to certain factors on the results. South African J. Agric. Sci. 10:983-992.
  6. Getachew, G., W. Pittroff, D. H. Putnam, A. Dandekar, S. Goyal, and E. J. DePeters. 2008. The influence of addition of gallic acid, tannic acid, or quebracho tannins to alfalfa hay on in vitro rumen fermentation and microbial protein synthesis. Anim. Feed. Sci. Technol. 140:444-461. https://doi.org/10.1016/j.anifeedsci.2007.03.011
  7. Goering, H. K. and P. J. Van Soest. 1970. Forage fiber analyses (Apparatus, reagents, procedures, and some applications). USDA Agricultural Handbook No. 379, Pg. 1-20. ARSUSDA:Washington, DC, USA.
  8. Guglielmelli, A., S. Calabro, R. Primi, F. Carone, M. I. Cutrignelli, R. Tudisco, G. Piccolo, B. Ronchi, and P. P. Danieli. 2011. In vitro fermentation patterns and methane production of sainfoin (Onobrychis viciifolia Scop.) hay with different condensed tannin contents. Grass Forage Sci. 66:488-500. https://doi.org/10.1111/j.1365-2494.2011.00805.x
  9. Grant, R.J. and D. R. Mertens. 1992. Impact of in vitro fermentation techniques upon kinetics of fiber digestion. J. Dairy Sci. 75:1263-1272. https://doi.org/10.3168/jds.S0022-0302(92)77876-X
  10. Hassanat, F. and C. Benchaar. 2013. Assessment of the effect of condensed (acacia and quebracho) and hydrolysable (chestnut and valonea) tannins on rumen fermentation and methane production in vitro. J. Sci. Food Agric. 93:332-339. https://doi.org/10.1002/jsfa.5763
  11. Hristov, A. N., C. Oh, J Lee, R. Meinen, F. Montes, T. Ott, J. Firkins, A. Rotz, C. Dell, A. Adesogan, W. Yang, J. Tricarico, E. Kebreab, G. Waghorn, J. Dijkstra, and S. Oosting. 2013. Mitigation of greenhouse gas emissions in livestock production - A review of technical options for non-$CO_2$ emissions. FAO Animal Production and Health Paper No. 177 (Ed. P. J. Gerber, B. Henderson, and H. P. S. Makkar). FAO, Rome, Italy.
  12. Jayanegara, A., E. Winac, C. R. Solivaa, S. Marquardta, M. Kreuzera, and F. Leibera. 2011. Dependence of forage quality and methanogenic potential of tropical plants on their phenolic fractions as determined by principal component analysis. Anim. Feed. Sci. Technol. 163:231-243. https://doi.org/10.1016/j.anifeedsci.2010.11.009
  13. Krueger, W. K., H. Gutierrez-Banuelos, G. E. Carstens, B. R. Min, W. E. Pinchak, R. R. Gomez, R. C. Anderson, N. A. Krueger, and T. D. A. Forbes. 2010. Effects of dietary tannin source on performance, feed efficiency, ruminal fermentation, and carcass and non-carcass traits in steers fed a high-grain diet. Anim. Feed. Sci. Technol. 159:1-9. https://doi.org/10.1016/j.anifeedsci.2010.05.003
  14. Leng, R. A. 2008. The potential of feeding nitrate to reduce enteric methane production in ruminants. A Report to the Department of Climate Change Commonwealth Government of Australia. ACT Canberra Australia. http://www.penambulbooks.com/Downloads/Leng-Final%20Modified%20%2017-9-2008.pdf Accessed May 6, 2014.
  15. Makkar, H. P. S. 2003. Quantification of Tannins in Tree and Shrub Foliage. A Laboratory Manual. Kluwer Academic Publishers, Dordrecht, the Netherlands.
  16. McDonald, P., A. C. Stirling, A. R. Henderson, W. A. Dewar, G. H. Stark, W. G. Davie, H. T. Macpherson, A. M. Reid, and J. Salter. 1960. Studies on Ensilage. Technical Bulletin no. 24. Edinburgh School of Agriculture, Edinburgh, Scotland, UK. pp. 1-83.
  17. Menke, K. H. and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development 28:7-55.
  18. Mueller-Harvey, I. 2006. Unraveling the conundrum of tannins in animal nutrition and health. J. Sci. Food Agric. 86:2010-2037. https://doi.org/10.1002/jsfa.2577
  19. Orskov, E. R. and I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92:499-503. https://doi.org/10.1017/S0021859600063048
  20. Ottenstein, D. M. and D. A. Bartley. 1971. Separation of free acids C2-C5 in dilute aqueous solution column technology. J. Chromatogr. Sci. 9:673-681. https://doi.org/10.1093/chromsci/9.11.673
  21. Patra, A. K. and J. Saxena. 2011. Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J. Sci. Food Agric. 91:24-37. https://doi.org/10.1002/jsfa.4152
  22. Porter, L. J., L. N. Hrstich, and B. G. Chan. 1985. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Photochemistry 25:223-230. https://doi.org/10.1016/S0031-9422(00)94533-3
  23. Santoso, B., B. Mwenya, C. Sar, and J. akahashi. 2007. Methane production and energy partition in sheep fed timothy hay silage- or hay-based diets. Indonesian J. Anim. Sci. Vet. 12:27-33.
  24. SAS. 2004. SAS version 9.0. SAS Institute Inc., Cary, NC,USA.
  25. Sebata, A., L. R. Ndlovu, and J. S. Dube. 2011. Chemical composition, in vitro dry matter digestibility and in vitro gas production of five woody species browsed by Matebele goats (Capra hircus L.) in a semi-arid savanna, Zimbabwe. Anim. Feed. Sci. Technol. 170:122-125. https://doi.org/10.1016/j.anifeedsci.2011.07.013
  26. Singh, B., A. Sahoo, R. Sharma, and T. K. Bhat. 2005. Effect of polethylene glycol on gas production parameters and nitrogen disappearance of some tree forages. Anim. Feed Sci. Technol. 123-124:351-364. https://doi.org/10.1016/j.anifeedsci.2005.04.033
  27. Soliva, C. R., A. B. Zeleke, C. Clement, H. D. Hess, V. Fievez, and M. Kreuzer. 2008. In vitro screening of various tropical foliages, seeds, fruits and medicinal plants for low methane and high ammonia generating potentials in the rumen. Anim. Feed. Sci. Technol. 147:53-71. https://doi.org/10.1016/j.anifeedsci.2007.09.009
  28. Tan, H. Y., C. C. Sieo, N. Abdullah, J. B. Liang, X. D. Huang, and Y. W. Ho. 2011. Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Anim. Feed. Sci. Technol. 169:185-193. https://doi.org/10.1016/j.anifeedsci.2011.07.004
  29. Tavendale, M. H., L. P. Meagher, D. Pacheco, N. Walker, G. T. Attwood, and S. Sivakumaran. 2005. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim. Feed Sci. Technol. 123-124:403-419. https://doi.org/10.1016/j.anifeedsci.2005.04.037
  30. Tefera, S., V. Mlambo, B. J. Dlamini, A. M. Dlamini, K. D. N. Koralagama, and F. L. Mould. 2008. Chemical composition and in vitro ruminal fermentation of common tree forages in the semi-arid rangelands of Swaziland. Anim. Feed Sci. Technol. 142:99-110. https://doi.org/10.1016/j.anifeedsci.2007.07.011
  31. Theodorou, M. K., B. A. Williams, M. S. Dhanoa, A. B. McAllen, and J. France. 1994. A simple gas production method using pressure transducers to determine the fermentation kinetics of ruminant feed. Anim. Feed Sci. Technol. 48:185-197. https://doi.org/10.1016/0377-8401(94)90171-6
  32. Tiemann, T. T., P. Avila, G. Ramirez, C. Lascano, M. Kreuzer, and H. D. Hess. 2008. In vitro ruminal fermentation of tanniniferous tropical plants: Plant-specific tannin effects and counteracting efficiency of PEG. Anim. Feed Sci. Technol. 146:222-241. https://doi.org/10.1016/j.anifeedsci.2007.12.009
  33. Tilley, J. M. A. and R. A. Terry. 1963. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci.18:104-111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x
  34. Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

Cited by

  1. Methanogenic potential of forages consumed throughout the year by cattle in a Sahelian pastoral area vol.56, pp.3, 2016, https://doi.org/10.1071/AN15487
  2. Methane Production Potential and Nutritive Value of Indigenous Browses from mid Rift Valley of Ethiopia vol.16, pp.10, 2017, https://doi.org/10.3923/pjn.2017.789.796
  3. Impact of Chestnut and Quebracho Tannins on Rumen Microbiota of Bovines vol.2017, pp.2314-6141, 2017, https://doi.org/10.1155/2017/9610810
  4. The use of certain medicinal plant extracts reduced in vitro methane production while improving in vitro organic matter digestibility vol.58, pp.5, 2018, https://doi.org/10.1071/AN16291
  5. Chemical composition and nutritional evaluation of Elm (Ulmus wallichiana) as browse for Bakerwal goats (Capra hircus) pp.1572-9680, 2020, https://doi.org/10.1007/s10457-018-0314-7
  6. Nutritional potentialities of some tree leaves based on polyphenols and rumen in vitro gas production vol.11, pp.10, 2018, https://doi.org/10.14202/vetworld.2018.1479-1485
  7. Effects of replacing rice bran with tamarind seed meal in concentrate mixture diets on the changes in ruminal ecology and feed utilization of dairy steers pp.1573-7438, 2018, https://doi.org/10.1007/s11250-018-1719-z
  8. In vitro screening of plants from the Brazilian Caatinga biome for methanogenic potential in ruminant nutrition pp.1614-7499, 2018, https://doi.org/10.1007/s11356-018-3446-4
  9. Nutrient intake, digestibility and growth performance of Washera lambs fed natural pasture hay supplemented with graded levels of Ficus thonningii(Chibha) leaves as replacement for concentrate mixture vol.7, pp.1, 2018, https://doi.org/10.1186/s40066-018-0182-4
  10. measurements of methane production from wheat and corn incubated in various forage-to-grain ratios pp.00225142, 2019, https://doi.org/10.1002/jsfa.9563
  11. Chemical composition, in vitro ruminal dry matter degradability and dry matter intake of some selected browse plants vol.5, pp.1, 2015, https://doi.org/10.1080/23311932.2019.1587811
  12. Effect of tree foliage supplementation of tropical grass diet on in vitro digestibility and fermentation, microbial biomass synthesis and enteric methane production in ruminants vol.51, pp.4, 2015, https://doi.org/10.1007/s11250-018-1772-7
  13. Rumen methane amelioration in sheep using two selected tanniferous phyto-leaves vol.10, pp.3, 2019, https://doi.org/10.1080/17583004.2019.1605480
  14. Methanogenic potential of tropical feeds rich in hydrolyzable tannins1,2 vol.97, pp.7, 2019, https://doi.org/10.1093/jas/skz199
  15. Effects of Lonicera japonica extract supplementation on in vitro ruminal fermentation, methane emission, and microbial population vol.90, pp.9, 2015, https://doi.org/10.1111/asj.13259
  16. Potential of Molecular Weight and Structure of Tannins to Reduce Methane Emissions from Ruminants: A Review vol.9, pp.11, 2015, https://doi.org/10.3390/ani9110856
  17. Temporal variations in leaf traits, chemical composition and in vitro true digestibility of four temperate fodder tree species vol.60, pp.5, 2020, https://doi.org/10.1071/an18771
  18. In vivo digestibility of six selected fodder species by goats in northern Ghana vol.52, pp.2, 2015, https://doi.org/10.1007/s11250-019-01989-w
  19. Mitigating the anti-nutritional effect of polyphenols on in vitro digestibility and fermentation characteristics of browse species in north western Ethiopia vol.52, pp.3, 2015, https://doi.org/10.1007/s11250-019-02126-3
  20. Tannin-Rich Plants as Natural Manipulators of Rumen Fermentation in the Livestock Industry vol.25, pp.12, 2015, https://doi.org/10.3390/molecules25122943
  21. Effect of supplementation with tree foliage on in vitro digestibility and fermentation, synthesis of microbial biomass and methane production of cattle diets vol.94, pp.4, 2015, https://doi.org/10.1007/s10457-019-00416-1
  22. In vitro degradability of corn silage and Leymus chinensis silage and evaluation of their mixed ratios on performance, digestion and serum parameters in beef cattle vol.104, pp.6, 2015, https://doi.org/10.1111/jpn.13392
  23. Seaweed and Seaweed Bioactives for Mitigation of Enteric Methane: Challenges and Opportunities vol.10, pp.12, 2020, https://doi.org/10.3390/ani10122432
  24. Dragon fruit (Hylocereus undatus) peel pellet as a rumen enhancer in Holstein crossbred bulls vol.34, pp.4, 2021, https://doi.org/10.5713/ajas.20.0151
  25. Physical, fermentative, and nutritional quality of silages made from three Sorghum bicolor varieties as affected by ensiling duration in South-west Nigeria vol.53, pp.2, 2015, https://doi.org/10.1007/s11250-021-02657-8