DOI QR코드

DOI QR Code

Assessment of Inhalation Dose Sensitivity by Physicochemical Properties of Airborne Particulates Containing Naturally Occurring Radioactive Materials

천연방사성물질을 함유한 공기 중 부유입자 흡입 시 입자의 물리화학적 특성에 따른 호흡방사선량 민감도 평가

  • Received : 2015.10.30
  • Accepted : 2015.11.24
  • Published : 2015.12.31

Abstract

Facilities processing raw materials containing naturally occurring radioactive materials (NORM) may give rise to enhanced radiation dose to workers due to chronic inhalation of airborne particulates. Internal radiation dose due to particulate inhalation varies depending on particulate properties, including size, shape, density, and absorption type. The objective of the present study was to assess inhalation dose sensitivity to physicochemical properties of airborne particulates. Committed effective doses to workers resulting from inhalation of airborne particulates were calculated based on International Commission on Radiological Protection 66 human respiratory tract model. Inhalation dose generally increased with decreasing particulate size. Committed effective doses due to inhalation of $0.01{\mu}m$ sized particulates were higher than doses due to $100{\mu}m$ sized particulates by factors of about 100 and 50 for $^{238}U$ and $^{230}Th$, respectively. Inhalation dose increased with decreasing shape factor. Shape factors of 1 and 2 resulted in dose difference by about 18 %. Inhalation dose increased with particulate mass density. Particulate mass densities of $11g{\cdot}cm^{-3}$ and $0.7g{\cdot}cm^{-3}$ resulted in dose difference by about 60 %. For $^{238}U$, inhalation doses were higher for absorption type of S, M, and F in that sequence. Committed effective dose for absorption type S of $^{238}U$ was about 9 times higher than dose for absorption F. For $^{230}Th$, inhalation doses were higher for absorption type of F, M, and S in that sequence. Committed effective dose for absorption type F of $^{230}Th$ was about 16 times higher than dose for absorption S. Consequently, use of default values for particulate properties without consideration of site specific physiochemical properties may potentially skew radiation dose estimates to unrealistic values up to 1-2 orders of magnitude. For this reason, it is highly recommended to consider site specific working materials and conditions and use the site specific particulate properties to accurately access radiation dose to workers at NORM processing facilities.

천연방사성물질을 취급하는 산업시설의 종사자들은 공정에서 발생하는 공기 중 입자의 흡입에 의해 만성적인 내부피폭을 받을 수 있다. 방사성 물질을 함유한 공기 중 입자 흡입에 의한 내부피폭은 입자의 크기, 모양, 밀도, 흡수형태에 따라 달라진다. 본 연구에서는 공기 중 부유 입자의 물리화학적 특성에 따른 피폭방사선량 민감도를 평가하였다. 흡입에 의한 내부피폭선량 평가는 국제방사선방호위원회 66 인체호흡기모델을 이용하였다. 일반적으로 입자의 크기가 감소할수록 예탁유효선량은 증가하는 경향을 보였으며, 입자 크기 $0.01{\mu}m$$100{\mu}m$ 에서의 피폭방사선량은 $^{238}U$ 의 경우 약 100 배, $^{230}Th$ 의 경우 약 50 배 차이를 보였다. 모양인자가 작을수록 피폭방사선량은 높게 나타났으며, 모양인자가 1 일 때 피폭방사선량은 모양인자가 2 일 때 보다 18% 높았다. 입자의 밀도가 증가할수록 피폭방사선량은 높게 나타났으며, 입자 밀도가 $11g{\cdot}cm^{-3}$ 인 경우 피폭방사선량은 밀도가 $0.7g{\cdot}cm^{-3}$ 인 경우에 비해 60% 높게 나타났다. $^{238}U$ 의 경우 피폭방사선량은 흡수형태 S, M, F 순으로 높게 나타났으며, 흡수형태 S 의 경우 F 에 비해 피폭방사선량이 약 9 배 높게 나타났다. $^{230}Th$ 의 경우 피폭방사선량은 흡수형태 F, M, S 순으로 높게 나타났으며, 흡수형태 F 의 경우 S 에 비해 피폭방사선량이 약 16 배 높게 나타났다. 민감도 평가에서 나타난 것처럼 입자의 물리화학적 특성을 고려하지 않고 피폭방사선량을 평가하는 경우 평가값은 실제값에 비해 수십 혹은 수백 배 이상 왜곡 될 수 있다. 천연방사성물질을 취급하는 작업장에서 종사자의 정확한 피폭방사선량 평가를 위해서는 취급하는 물질, 작업환경 등을 고려하고 입자의 물리화학적 특성값을 실측하여 실시하는 것이 바람직하다.

Keywords

References

  1. ICRP. Human respiratory tract model for radiological protection. ICRP Publication 66. 1994.
  2. Dorrian MD, Bailey MR. Particle size distributions of radioactive aerosols measured in work places. Radiat Prot Dosim. 1995;60(2):119-133. https://doi.org/10.1093/oxfordjournals.rpd.a082709
  3. Johnson DL, Leith D, Reist PC. Drag on nonspherical, orthotropic aerosol-particles. J Aerosol Sci. 1987;18:87-97. https://doi.org/10.1016/0021-8502(87)90013-9
  4. Mercer T. Aerosol technology in hazard evaluation. New York and London; Academic Press. 1973.
  5. Hinds W. Aerosol technology: properties, behavior, and measurement of airborne particles. New York; John Wiley & Sons. 1998.
  6. Kim KP, Wu CY, Birky BK, Bolch WE. Influence of particle size distribution on inhalation doses to workers in the Florida phosphate industry. Health Phys. 2006;91(1):58-67. https://doi.org/10.1097/01.HP.0000200261.96014.6c
  7. Kim KP, Wu CY, Birky BK, Bolch WE. TENORM aerosols in the Florida phosphate industry-assessment of lung fluid solubility and annual effective dose to workers. Radiat Prot Dosim. 2007;123(1): 41-55. https://doi.org/10.1093/rpd/ncl083
  8. ICRP. Age-dependent doses to members of the public from Intake of radionuclides: Part 2 Ingestion dose coefficients. ICRP publication 67. 1993.
  9. ICRP. Age-dependent doses to members of the public from Intake of radionuclides: Part 3 Ingestion dose coefficients. ICRP Publication 69. 1995.

Cited by

  1. PET 사이클로트론 시설의 공기 방사화 분석 vol.10, pp.7, 2015, https://doi.org/10.7742/jksr.2016.10.7.489