DOI QR코드

DOI QR Code

Heat Evaluation System in Concrete Considering Evaporation Heat

기화열을 고려한 콘크리트의 온도평가시스템 개발

  • 이태규 (우송대학교 철도건설시스템학과)
  • Received : 2015.06.26
  • Accepted : 2015.07.22
  • Published : 2015.12.28

Abstract

When the moisture in concrete member evaporates by high temperature, the evaporation heat which absorbs surrounding temperature occurs. The incremental rate of the internal temperature in concrete is reduced due to the evaporation heat in spite of continuously increasing external temperature. Therefore, this paper has proposed the evaluation algorithm for predicting the internal temperature of concrete members considering the evaporation heat under the high temperature. Finite element method is employed to facilitate thermal analysis for any position of member. To demonstrate the validity of this numerical procedure, the prediction by the proposed algorithm is compared with the test results of other researchers. The proposed algorithm shows a good agreement with the experimental results including the phenomenon that temperature is lost by the evaporation heat.

고온으로 인하여 콘크리트 내부의 수분이 증발할 경우 주변의 온도를 흡수하는 기화열이 발생하게 된다. 이에 따라 콘크리트의 내부온도는 외부의 온도가 지속적으로 증가함에도 불구하고 증가율이 둔화되는 현상이 나타나게 된다. 본 논문은 고강도 콘크리트 부재의 고온 하에서의 기화열을 고려한 내부의 온도변화를 예측하고자 하는 것으로 부재 내부의 임의의 위치에서의 온도를 산정하기 위하여 유한요소방식을 적용하였다. 이러한 해석기법의 정확성을 검증하기 위하여 여러 다른 연구자들에 의한 실험 데이터와 비교하였으며, 그 결과 기화열로 인하여 온도가 소실되는 현상을 포함한 전반적인 부재 내부의 온도분포 거동이 실제 실험 데이터와 거의 유사하게 나타나는 것으로 확인되었다.

Keywords

References

  1. 김흥열, 고온영역에서 고강도 콘크리트의 역학적 특성에 관한 실험적 연구, 건국대학교, 박사학위논문, 2002.
  2. M.S. Harmathy, Fire Safety Design and Concrete, Longman Science and Technical, 1993.
  3. V. K. R. Kodur, T. C. Wang, and F. P. Cheng, "Predicting the Fire Resistance Behabior of High Strength Concrete Columns," Cement and Concrete Composites, Vol.26, No.2, pp.141-153, 2004. https://doi.org/10.1016/S0958-9465(03)00089-1
  4. 김윤용, 오광진, 박기태, 권성준, "공극구조 및 하중조건에 따른 콘크리트의 초음파 속도 모델링," 한국콘텐츠학회논문지, 제15권, 제3호, pp.415-426, 2015. https://doi.org/10.5392/JKCA.2015.15.03.415
  5. W. Grosshandler, Fire Resistance Determination and Performance Prediction Research, National Institute of Standards and Technology, NISTIR 6890, 2002.
  6. 이태규, FireCon, 한국저작권위원회, 2006.
  7. 이태규, "시공단계에 따른 철근콘크리트 고층건물의 해석시스템 개발," 한국콘텐츠학회논문지, 제13권, 제9호, pp.410-417, 2013. https://doi.org/10.5392/JKCA.2013.13.09.410
  8. 조호진, 송하원, 변근주, "온도변형 및 자기수축을 고려한 초기재령 콘크리트의 거동 해석," 대한토목학회 논문집, 제23권, 제3A호, pp.537-547, 2003.
  9. S. W. Park and Y. R. Kim, "Interconversion between Relaxation Modulus and Creep Compliance for Viscoelastic Solids," Journal of Materials in Civil Engineering, Vol.11, No.1, pp.76-82, 1999. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:1(76)
  10. Eurocode4, Design of Composite Steel and Concrete Structures : Structural Fire Design, CEN/TC250/SC4, N39, Second Draft, 1994.
  11. Eurocode2, Design of Concrete Structures Part 1,2 : General Rules-Structural Fire Design, England, 2002.
  12. 한병찬, 권영진, 김재환, 신영수, 최은규, "온도의존성 열특성 계수를 고려한 화재에 노출된 철근콘크리트 골조의 해석적 연구," 한국콘크리트학회 논문집, 제19권, 제3호, pp.283-292, 2007.
  13. 박찬규, 이승훈, 건축구조물에 사용되는 고강도 콘크리트 기둥의 내화성능 개선연구, 삼성물산 건설부문 기술연구소, 2006.
  14. 高正遠, 田村政道, 兼松學, 野口貴文, 火災加熱條件下にあはるコシクリ一トの細孔構造の變化と熱.水分移動に關する實驗的硏究, 日本建築學會大會學術講演槪要集, pp.55-56, 2005.