DOI QR코드

DOI QR Code

Development of Mapping Method for Liquefaction Hazard in Moderate Seismic Region Considering the Uncertainty of Big Site Investigation Data

빅데이터 지반정보의 불확실성을 고려한 중진지역에서의 액상화 위험도 작성기법 개발

  • Kwak, Minjung (Department of Urban & Environmental System Engineering, Seokyeong University) ;
  • Ku, Taijin (Dasan Consultant Co.) ;
  • Choi, Jaesoon (Deptment of Civil & Architectural Engineering, Seokyeong University)
  • Received : 2014.08.12
  • Accepted : 2014.11.07
  • Published : 2015.01.01

Abstract

Recently, Korean government has tried out to set up earthquake hazards prevention system. In the system, several geotechnical hazard maps including liquefaction hazard map and landslide hazard map for the whole country have drawn to consider the domestic seismic characteristics. To draw the macro liquefaction hazard map, big data of site investigations in metropolitan areas and provincial areas has to be verified for its application. In this research, we carried out site response analyses using 522 borehole site investigation data in S city during a desirable earthquake. The soil classification was separately compared to shear wave velocity considering the uncertainty of site investigation data. Probability distribution and statistical analysis for the results of site response analyses was applied to the feasibility study. Finally, we suggest a new site amplification coefficient, hereby presented with the similar results of liquefaction hazard mapping using the calculated liquefaction potential index by the site response analyses. Above-mentioned study will be expected to help to follow research and draw liquefaction hazard map in moderate seismic region.

최근 우리 정부는 안전한 대한민국이라는 슬로건 아래 지진재해를 포함한 자연재해피해를 최소화하는데 많은 노력을 집중하고 있으며, 이를 위해 산사태 위험도와 액상화 위험도와 같은 지진 시 지반피해 GIS 시스템 데이터가 구축되고 있는 실정이다. 우리나라 전역을 포함하는 지진 시 액상화 위험도를 작성하기 위해서는 수많은 지반시추정보에 대한 적용성 검토가 필요하다. 본 연구에서는 액상화 위험도 작성을 위해 인구밀도가 높은 광역지역의 지반증폭계수를 검토하였으며 이를 위해 S시 522개 시추공지반 정보를 수집하여 지반응답해석을 수행하였다. 이때 지반분류는 지반정보의 불확실성을 고려하고자 현행 내진 설계기준에서 제안하고 있는 시추종료 깊이 이후의 지반 정보를 30m로 가정하는 경우와 지반정보의 오리지널 데이터 값만을 이용하는 경우로 나누어 비교하였으며, 타당성 검토 시에는 지반응답해석 결과에 대한 확률분포와 통계분석을 이용하여 수행하였다. 최종적으로 정규분포를 통한 신뢰도 50%, 70%, 90%에 대한 지반증폭계수를 도출하여 액상화 위험도를 도시하였으며, 이를 지반응답해석을 통해 도시한 LPI 액상화 위험도와 비교하여 가장 유사한 값을 추천하였다. 연구결과 제안된 지반증폭계수가 향후 국내 액상화에 대한 연구와 중진지역의 광역지역 액상화 위험도 작성에 큰 도움이 될 수 있을 것으로 기대한다.

Keywords

References

  1. Beetham, R. D., Begg, J. G., Barker, P., Levick, S., Beetham, J. (2011), Assessment of liquefaction and related ground failure hazards in Palmerston North, Consultancy Report, GNS Science, Wellington, New Zealand, pp. 8-25
  2. Song, B. W. (2010), Determination on Liquefaction with Ground Natural Period, Journal of the Korean Geo-Environmental Society Fall Conference (10th Anniversary) pp. 459-467
  3. European Committee for Standardization (1998), Eurocode8, Report, European Committee for Standardization, Brussels, Belgium, pp. 33-35
  4. Heidari, T. and Andrus, R.D. (2010), mapping Liquefaction Potential of Aged Soil Deposits in Mount Pleasant South Carolina, Engineering Geology, Vol. 112, Issues. 1-4, pp. 1-12. https://doi.org/10.1016/j.enggeo.2010.02.001
  5. Idriss, I. M. and Sun, J.I. (1997), User's Manual for SHAKE91, Center for Geotechnical Modeling Department of Civil & Environment Engineering University of California, Davis, C.A., pp. 1-11.
  6. Iwasaki, T., Tatsuoka, K., Tokida, F. and Yasuda, S. (1978a), A Practical Method for Assessing Soil Liquefaction Potential Based on Case Studies at Various Sites in Japan, Proceedings of 2nd International Conference on Microzonation, National Science Foundation UNESCO, San Francisco, C.A., Vol. 2, pp. 885-896.
  7. Iwasaki, T., Tokida, F., Tatsuoka, K., Watanabe, S. and Yasuda, S. (1978b), Microzonation for Soil Liquefaction Potential using Simplified Methods, Proceedings of 2nd International Conference on Microzonation, National Science Foundation UNESCO, Seattle, W.A., pp. 1319-1330.
  8. JGS (1999), Manual for Zonation on Seismic Geotechnical Hazards (Revised Version), The Japanese Geotechnical Society, Tokyo, Japan, pp. 72-99.
  9. Hwang, J. T., Lee, J. K. and Shin, E. C. (2013), A Study on the Applicability of Arias Intensity Liquefaction Assessment, Journal of the Korean Geo-Environmental Society Vol. 14, pp. 13-19. https://doi.org/10.14481/jkges.2013.14.12.013
  10. Kim, S. I., Park, I. J. and Choi, J. S. (2000), A Study on the Assesment of Liquefaction Potential in Korea, Journal of Korean Society of Civil Engineers, KSCE, Vol. 20, No. 2-C, pp. 129-139 (in Korean).
  11. Korean Geotechnical Society (2010), Earthquake Site Response Analysis Interpretation Through the Round Robin Test, Special Publication No. 2, Goomisekwan, pp. 31-33 (in Korean).
  12. Ku, T. J. (2010), Development of Mapping of Liquefaction Hazard Considering Various Ground Condition in Korea, Master's thesis, Seokyeong University. pp. 38-48. (in Korean).
  13. Kwak, C. W. (2001), A Study on the Liqefaction Hazard Microzonation at Reclaimed Ports and Harbors in Koera, Master's thesis, Yonsei University. pp. 20-81 (in Korean).
  14. Ministry of Land, Transport and Maritime Affairs & Korea Infrastructure Safety Corporation (2011 Report), Korea Infrastructure Safety Corporation, pp. 31-50.
  15. Monge, O., Chanssagneux, D. and Mouroux, P. (1998), Methodology for Liquefaction Hazard Studies: New Tool and Recent Application, Soil Dynamics and Earthquake Engineering, Vol. 17, pp. 415-425. https://doi.org/10.1016/S0267-7261(98)00013-X
  16. Park, D. H., Kwak, D. Y., Jeong, C. G. and Park, T. H. (2012), Development of Probabilistic Seismic Site Coefficients of Korea, Soil Dynamics and Earthquake Engineering, Vol. 43, pp. 247-260 (in Korean). https://doi.org/10.1016/j.soildyn.2012.07.018
  17. Per B. Schnabel, H. Bolton Seed. (1973), Accelerations in rock for earthquakes in the western United States, Bulletin of the Seismological Society of America, Vol. 63, No. 2, pp. 501-516
  18. Seed, H. B., Tokimatsu, K. and Harder, L. F. (1985), Influence of SPT Procedures in Soil Liquefaction Resistance Evaluation, Journal of Geotechnical engineering, ASCE, Vol. 111, No. 12, pp. 1425-1445. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:12(1425)
  19. Sun. C. K. (2010), Suggestion of Additional Criteria for Site Categorization in Korea by Quantifying Regional Specific Characteristics on Seismic Response, Journal of Korean Society of Earth and Exploration Geophysicists, KSEG, Vol. 13, No. 3, pp. 203-218 (in Korean).
  20. Sun. C. K., Jeong, C. K. and Kim, D. S. (2005), A Proposition of Site Coefficients and Site Classification System for Design Ground Motions at Inland of the Korean Peninsula, Journal of Korean Geotechnical Society, KGS, Vol. 21, No. 6, pp. 101-115 (in Korean).
  21. Todorovsak, M. I. and Trifunac, M. D. (1999), Liquefaction Opportunity Mapping via Seismic Wave Energy, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 125, No. 12, pp. 1032-1042. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:12(1032)