DOI QR코드

DOI QR Code

Effect of Halophilic Bacterium, Haloarcula vallismortis, Extract on UV-induced Skin Change

호염 미생물(Haloarcula vallismortis) 용해물의 자외선유발 피부변화에 대한 효과

  • Kim, Ji Hyung (Skin Research Center, Research Park, LG Household & Healthcare Ltd.) ;
  • Shin, Jae Young (Skin Research Center, Research Park, LG Household & Healthcare Ltd.) ;
  • Hwang, Seung Jin (Skin Research Center, Research Park, LG Household & Healthcare Ltd.) ;
  • Kim, Yun Sun (Skin Research Center, Research Park, LG Household & Healthcare Ltd.) ;
  • Kim, Yoo Mi (Skin Research Center, Research Park, LG Household & Healthcare Ltd.) ;
  • Gil, So Yeon (Skin Research Center, Research Park, LG Household & Healthcare Ltd.) ;
  • Jin, Mu Hyun (Skin Research Center, Research Park, LG Household & Healthcare Ltd.) ;
  • Lee, Sang Hwa (Skin Research Center, Research Park, LG Household & Healthcare Ltd.)
  • 김지형 (LG 생활건강 기술연구원 피부과학연구소) ;
  • 신재영 (LG 생활건강 기술연구원 피부과학연구소) ;
  • 황승진 (LG 생활건강 기술연구원 피부과학연구소) ;
  • 김윤선 (LG 생활건강 기술연구원 피부과학연구소) ;
  • 김유미 (LG 생활건강 기술연구원 피부과학연구소) ;
  • 길소연 (LG 생활건강 기술연구원 피부과학연구소) ;
  • 진무현 (LG 생활건강 기술연구원 피부과학연구소) ;
  • 이상화 (LG 생활건강 기술연구원 피부과학연구소)
  • Received : 2015.11.16
  • Accepted : 2015.12.11
  • Published : 2015.12.30

Abstract

Skin carrys out protective role against harmful outer environment assaults including ultraviolet radiation, heavy metals and oxides. Especially, ultraviolet-B (UVB) light causes inflammatory reactions in skin such as sun burn and erythma and stimulates melanin pigmentation. Furthermore, the influx of UVB into skin cells causes DNA damage in keratinocytes and dermal fibroblasts, inhibition of extracellular matrix (ECM) synthesis which leads to a decrease in elasticity of skin and wrinkle formation. It also damages dermal connective tissue and disrupts the skin barrier function. Prolonged exposure of human skin to UVB light is well known to trigger severe skin lesions such as cell death and carcinogenesis. Haloarcula vallismortis is a halophilic microorganism isolated from the Dead Sea, Its growth characteristics have not been studied in detail yet. It generally grows at salinity more than 10%, but the actual growth salinity usually ranges between 20 to 25%. Because H. vallismortis is found mainly in saltern or salt lakes, there could exist defense mechanisms against strong sunlight. One of them is generation of additional ATP using halorhodopsin which absorbs photons and produces energy by potential difference formed by opening the chloride ion channel. It often shows a color of pink or red because of their high content of carotenoid pigments and it is considered to act as a defense mechanism against intense UV irradiation. In this study, the anti-inflammatory effect of the halophilic microorganism, H. vallismortis, extract was investigated. It was found that H. vallismortis extract had protective effect on DNA damage induced by UV irradiation. These results suggest that the extract of halophilic bacterium, H. vallismortis could be used as a bio-sunscreen or natural sunscreen which ameliorate the harmful effects of UV light with its anti-inflammatory and DNA protective properties.

피부는 외부 유해물질로부터 내부기관을 보호하는 장벽기능을 하는 대표적인 기관으로 자외선(ultraviolet radiation, UV), 중금속, 각종 산화 물질들과 같은 외부의 위협에 항상 노출되어 있어 손상을 받기 쉽다. 특히 자외선 B (UVB)는 진피의 상부까지 도달하여 화상이나 홍반과 같은 염증반응을 일으키며 멜라닌 생성을 촉진시켜 색소 침착을 유발한다. 지나친 자외선 B의 피부세포로의 유입은 각질세포 및 진피 섬유아세포의 DNA손상을 야기하고, 세포외기질의 합성을 방해하여 피부탄력감소, 주름생성, 진피 결합조직의 손상과 함께 피부장벽을 붕괴시켜 노화를 일으키며, 장기간 노출 시 심각한 피부 병변으로 이어져 피부세포 사멸 및 종양의 발생으로까지 이어진다. Haloarcula vallismortis는 사해로부터 분리 동정한 미생물로 호염성 고생물의 생장적 특징은 아직 자세히 연구된 바는 없다. 대게 10% 이상의 염도에서 자라는데 실제 생장염도는 평균 20 ~ 25% 염도에서 자란다. 염도가 높은 호수나 염전에서 주로 발견되기 때문에 강한 햇빛에 대한 방어기작이 존재한다. 그중 하나로 다른 ATP를 생성하기 위한 bacteriorhodopsin외에 halorhodopsin이라는 색소를 이용, 광자(photon)를 흡수하고 염화이온 채널을 개방시켜 생기는 전위차를 이용해 추가로 에너지를 생산한다. 또 carotenoid 색소로 인해 농도가 높을시 분홍색 또는 빨간색을 띄는 특징이 있는데 이것이 강한 자외선에 대한 방어기작을 할 것이라고 여겨진다. 본 연구는 호염성 고세균이 자외선을 에너지 소스로 이용하는 특성을 이용하여 자외선으로부터 피부를 방어하는 방법을 개발하고자 이들의 피부각질세포에서 자외선에 의한 항염 효과 및 DNA 손상 방어 효과를 확인하였다. 그리고 이들을 천연 자외선 차단제의 소재로서 사용할 수 있음을 확인하였다.

Keywords

References

  1. M. Ichihashi, M. Yagi, K. Nomoto, and Y. Yonei, Glycation stress and photo-aging in skin, Anti-Aging medicine, 8, 23 (2011). https://doi.org/10.3793/jaam.8.23
  2. F. Yamazaki, H. Okamoto, H. Miyauchi-Hashimoto, Y. Matsumura, T. Itoh, K. Tanaka, T. Kunisada, and T. Horio, XPA gene-deficient, SCF-transgenic mice with epidermal melanin are resistant to UV-induced carcinogenesis, J. Invest. Dermatol., 137, 220 (2004).
  3. F. R. D. Gruijl, H. J. V. Kranen, and L. H. F. Mullenders, UV-induced DNA damage, repair, mutations and oncogenic pathways in skin cancer, J. Photochem. Photobiol., 63, 19 (2001). https://doi.org/10.1016/S1011-1344(01)00199-3
  4. S. Premi and D. E. Brash, Unanticipated role of melanin in causing carcinogenic cyclobutane pyrimidine dimers, Mol. Cell. Oncol., 2372 (2015).
  5. E. Lee, J. Koo, and T. Berger, UVB phototherapy and skin cancer risk: a review of the literature, Int. J. Dermatol., 4, 355 (2005).
  6. J. Yagasaki, D. Suzuki, K. Ihara, K. Inoue, T. Kikukawa, M. Sakai, M. Fujii, M. Homma, H. Kandori, and Y. Sudo, Spectroscopic studies of a sensory rhodopsin I homologue from the archaeon Haloarcula vallismortis, Biochemistry, 49, 1183 (2010). https://doi.org/10.1021/bi901824a
  7. O. Beja, L. Aravind, E. V. Koonin, M. T. Suzuki, A. Hadd, L. P. Nguyen, S. B. Jovanovich, C. M. Gates, R. A. Feldman, J. L. Spudich, E. N. Spudich, and E. F. DeLong, Bacterial rhodopsin: evidence for a new type of phototrophy in the sea, Science, 289, 1902 (2000). https://doi.org/10.1126/science.289.5486.1902
  8. J. M. Kim, P. J. Booth, S. J. Allen, and H. G. Khorana, Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin, J. Mol. Biol., 2, 409 (2001).
  9. B. Schoberts and J. K. Lanyi, Halorhodopsin is a light-driven chloride pump, J. Biol. Chem., 17, 10306 (1982).
  10. H. S. Lee and J. A. Yoon, Inhibitory activity of advanced glycation endproducts (AGE) formation of edible plants for development of anti-wrinkle ingredients, J. Korean Soc. Food Sci. Nutr., 39(2), 186 (2010). https://doi.org/10.3746/jkfn.2010.39.2.186
  11. Y. S. Kim, J. H. Moon, I. W. Choi, and H. D. Choi, Physicochemical properties and antioxidant activities of maillard reaction products from hydrolyzed wheat gluten, Korean J. Food Sci. Technol., 41(2), 122 (2009).
  12. N. Matsuura, T. Aradate, C. Sasaki, H. Kojima, M. Ohara, J. Hasegawa, and M. Ubukata, Screening system for the maillard reaction inhibitor from natural product extracts, J. Health Sci., 48, 520 (2002). https://doi.org/10.1248/jhs.48.520
  13. N. S. Baliga, R. Bonneau, M. T. Facciotti, M. Pan, G. Glusman, E. W. Deutsch, P. Shannon, Y. Chiu, R. S. Weng, R. R. Gan, P. Hung, S. V. Date, E. Marcotte, L. Hood, and W. V. Ng, Genome sequence of Haloarcula marismortui: a halophilic archaeon from the dead sea, Genome Research, 14, 2221 (2005).
  14. S. Fendrihan, A. Legat, M. Pfaffenhuemer, C. Gruder, G. Weidler, F. Gerbl, and H. S. Lotter, Extremely Halophilic archaea and the issue of long-term microbial survival, Rev. Environ. Sci. Biotechnol., 5, 203 (2006). https://doi.org/10.1007/s11157-006-0007-y
  15. H. S. Park and M. J. Jung, Isolation and identification of an extremely halophilic bacterium from solar salts, Kor. J. Appl. Microbiol. Biotechnol., 24, 671 (1996).
  16. S. Pillai, C. Oresajo, and J. Hayward, Ultraviolet radiation and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation - a review, Int. J. Cosmetic Sci., 10, 1111 (2005).
  17. N. Matsuura, N. Matsuura, C. Kurosaka, M. Ubukata, S. Kittaka, and M. Ohara, Potent protein glycation inhibition of plantagoside in plantago major seeds, Biomed Res. Int., 10, 1155 (2014).
  18. S. S. Kumbhar and R. D. Nikhate, A review on sunscreen formulation, PhTechMed., 4, 1 (2015).