DOI QR코드

DOI QR Code

Quality characteristic of Omija (Schizandra chinensis Baillon) seed oils by roasting conditions and extraction methods

볶음 조건 및 추출 방법에 따른 오미자씨유의 품질 특성

  • Lee, Hyeon-Jeong (Department of Food Science and Technology, Kyungpook National University) ;
  • Cho, Jeong-Seok (Department of Food Science and Technology, Kyungpook National University) ;
  • Lee, Yeong-Min (Department of Food Science and Technology, Kyungpook National University) ;
  • Choi, Ji-Young (Department of Food Science and Technology, Kyungpook National University) ;
  • Sung, Jun-Hyung (Department of Food Science and Technology, Kyungpook National University) ;
  • Chung, Hun-Sik (Department of Food Science and Technology, Pusan National University) ;
  • Moon, Kwang-Deog (Department of Food Science and Technology, Kyungpook National University)
  • Received : 2015.10.07
  • Accepted : 2015.11.09
  • Published : 2015.12.30

Abstract

The influence of different roasting temperatures, times and extraction methods on the quality characteristics of Omija (Schizandra chinensis) seed oils was investigated. Roasted Omija seeds were divided into five groups based on roasting temperature-time conditions: no roasting (Raw) and roasting [R11: $150^{\circ}C$, 10 min, R12: $150^{\circ}C$, 20 min, R21: $250^{\circ}C$, 10 min, R22: $250^{\circ}C$, 20 min (R22)]. Oils from each of the raw and roasted Omija seeds were obtained by solvent (n-hexane) and press (machine) extraction. The $L^*$ values decreased, but the $a^*$ and $b^*$ values increased with increasing the roasting temperature and time. The $L^*$ values were lower in the press-extracted oils than in the solvent-extracted oils. The peroxide value (POV) of Omija seed oils decreased with increasing the roasting temperature-time values. The POV value was higher in the press-extracted oils than in the solvent-extracted oils. ABTS (2, 2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)) radical inhibition of Omija seed oils was higher in the solvent-extracted oils than in the press-extracted oils, but there were no significant differences between the two oils. The four major kinds of fatty acid methyl esters detected in Omija seed oils were methyl butyrate, methyl hexanoate, methyl arachidate, and methyl eicosanoate. In conclusion, Omija seed oils obtained by solvent extraction and at higher roasting temperature-time values were more effective antioxidants.

본 연구를 통해 오미자의 산업 부산물인 오미자씨를 이용하여 볶음 조건과 추출 방법에 따른 오미자씨유의 품질특성을 알아보고자 하였다. 볶음 조건과 추출 방법이 다른 10종 오미자씨유의 수율을 측정한 결과 용매 추출에 비해 압착 추출의 수율이 더 높았으며 이는 압착 시 함께 얻어지는 오미자씨 박에 의한 것으로 보인다. 또한 오미자씨의 볶음 온도가 높고 볶음 시간이 길수록 오미자씨유의 수율은 증가하는 경향을 보였다. 볶음 시간이 길고 볶음 온도가 높을수록 오미자씨유의 $L^*$ 값은 전반적으로 낮았으며, 용매 추출에 비해 압착 추출의 $L^*$ 값이 더 낮은 값으로 나타났다. $a^*$$b^*$ 값의 경우 볶음 시간이 길고 볶음 온도가 높을수록 그 값이 증가하여 볶음 조건과 추출 방법에 따른 오미자씨유의 색 변화를 확인할 수 있었다. 볶음 처리하지 않은 오미자씨의 경우 용매 추출 오미자씨유에 비해 압착 추출 오미자씨유의 과산화물가가 유의적으로 더 높게 나타났다. 하지만 볶음 온도가 높고 볶음 시간이 길수록 추출 방법에 의한 과산화물가의 값 차이는 감소하였으며 $250^{\circ}C$에서 볶음 처리한 오미자씨유의 과산화물가는 추출방법에 따른 유의적 차이가 나타나지 않았다. 또한 볶음 온도가 높고 볶음 시간이 길수록 오미자씨유의 과산화물가는 감소하는 경향을 보였다. 오미자씨유 희색액의 DPPH radical 소거능 측정 결과 $31.91{\pm}1.57{\sim}39.27{\pm}1.61%$ 수준으로 나타났으며, 볶음조건에 따른 오미자씨유 희석액의 ABTS radical 저해능 측정 결과 유의적 차이는 보이지 않았다. 볶음 조건과 추출방법을 달리한 오미자씨유의 fatty acid methyl ester(FAME) 조성의 분석결과, 주요 FAME로는 methyl butyrate, methyl hexanoate, methyl arachidate, methy eicosanoate가 분석되었다. 이 중 methyl butyrate가 $96.96{\pm}0.39{\sim}97.39{\pm}0.10%$로 가장 높은 조성으로 존재하였으며, 주요 4종의 FAME의 총 함량은 99.56~99.65%를 차지하였다. 따라서 오미자씨유의 제조에 있어서 높은 수율, 낮은 과산화물가, 다소 높은 항산화성을 위하여 용매 추출, 긴 볶음 시간 및 높은 볶음 온도가 더 유리하다고 사료된다.

Keywords

References

  1. Sung KC (2011) A study on the pharmaceutical and chemical characteristics and analysis of natural Omija extract. J Korean Oil Chem Soc, 28, 290-298
  2. Oh SL, Kim SS, Min BY, Chung DH (1990) Composition of free sugars, free amino acid, non-volatile organic acids and tannins in the extracts of L. chinesis M., A. acutiloba K., S. chinensis B. and A. sessiliflorum S.. Korean J Food Sci Technol, 22, 76-81
  3. Kim DG, Kim MB, Kim H, Park JH, Im JP, Hong SH (2005) Herb medicinal pharmacognosy. Shinill Books, Seoul, Korea, p 407
  4. Nomura M, Nakachiyama M, Hida T, Ohtaki Y, Sudo K, Aizawa T, Aburada M, Miyamoto KI (1994) Gomisin A, a lignan component of Schizandora fruits, inhibits development of preneoplastic lesions in rat liver by 3'-methyl-4-dimethylamino-azobenzene. Cancer Lett, 76, 11-18 https://doi.org/10.1016/0304-3835(94)90128-7
  5. Seo YJ, Lee JH, Han SY, Park JU, Cho RH (2012) Current status and development strategy of the agriculture for regional specialization. Green Tourism Res, 19, 37-49
  6. Jang JT, Seo WH, Baek HH (2009) Enzymatic hydrolysis optimization of a snow crab processing by-product. Korean J Food Sci Technol, 41, 622-627
  7. Seo GU, Choi SY, Kim TW, Ryu SG, Park JH, Lee SC (2013) Functional activity of Makgeolli by-products as cosmetic materials. J Korean Soc Food Sci Nutr, 42, 505-511 https://doi.org/10.3746/jkfn.2013.42.4.505
  8. Jeon SY, Baek JH, Jeong EJ, Cha YJ (2012) Optimal extraction conditions of flavonoids from onion peels via response surface methodology. J Korean Soc Food Sci Nutr, 41, 695-699 https://doi.org/10.3746/jkfn.2012.41.5.695
  9. Kim SK, Kim SW, Noh SJ, Kim YJ, Kang KH, Lee SC (2013) Qualities of Konjac containing tunic extract from Styela clava. J Korean Soc Food Sci Nutr, 42, 410-414 https://doi.org/10.3746/jkfn.2013.42.3.410
  10. Korea Food and Drug Administration (2013) Korean food standards codex. Korea Food and Drug Administration, Cheongju, Korea
  11. Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199-1200 https://doi.org/10.1038/1811199a0
  12. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cationdecolorization assay. Free Radical Bio Med. 26, 1231-1237 https://doi.org/10.1016/S0891-5849(98)00315-3
  13. Gokhan Durmaz, Vural Gokmen (2011) Changes in oxidative stability, antioxidant capacity and phytochemical composition of Pistacia terebinthus oil with roasting. Food Chem, 125, 410-414 https://doi.org/10.1016/j.foodchem.2010.09.021
  14. Jang SH, Lee SM, Jeong HS, Lee JS (2010) Oxidative stability of grape seed oils under different roasting conditions. J Korean Soc Food Sci Nutr, 39, 1715-1718 https://doi.org/10.3746/jkfn.2010.39.11.1715
  15. Kim KS, Park CG, Ryu SN, Bang JK, Lee BH (2000) Schizandrin, oil compounds and their extraction yield in fruits of Schizandra chinensis Baillon. Korean J Crop Sci, 45, 158-162
  16. Ryu IH, Kwon TO (2012) The antioxidative effect and ingredients of oil extracted from Schizandra chinensis seed. Korean J Medicinal Crop Sci, 20, 63-71 https://doi.org/10.7783/KJMCS.2012.20.1.063
  17. Ryu SN, Kim KS, Lee EB, Kang SS, KIm JS, Cheon SA, Lee BH (1998) Acute toxidity of fruit pigment and seed oil of Schizandra chinensis in mice. Korean J Intl Agri, 10, 37-41
  18. Yang JC (2012) The evaluation on the effectiveness as a cosmetic material of oil extracted from Schizandra chinensis seed. J Korean Oil Chem Soc, 29, 231-237
  19. Choi SW, Chung US, Lee KT (2005) Preparation of high quality grape seed oil by solvent extraction and chemical refining process. Korean J Food Preserv, 12, 660-607
  20. Rombaut N, Savoirea R, Thomasset B, Castello J, Hecke EV, Lanoiselle JL (2015) Optimization of oil yield and oil total phenolic content during grape seed cold screw pressing. Ind Crop Prod, 63, 26-33 https://doi.org/10.1016/j.indcrop.2014.10.001

Cited by

  1. 오미자 열매, 씨, 착즙 후 박의 항산화, 항균 및 항혈전 활성 평가 vol.27, pp.2, 2015, https://doi.org/10.5352/jls.2017.27.2.131
  2. Evaluation of Lignan Compound Content and Bioactivity of Raw Omija and Sugared Omija in Serum of Sprague Dawley Rat vol.8, pp.9, 2019, https://doi.org/10.3390/foods8090373