DOI QR코드

DOI QR Code

Antioxidant, Anti-diabetic, Anti-cholinesterase, and Nitric Oxide Inhibitory Activities of Fruiting Bodies of Agaricus brasiliensis

신령버섯 자실체 메탄올 추출물의 항산화, 항당뇨 및 Nitric Oxide의 저해 효과

  • Yoon, Ki Nam (Department of Clinical Laboratory Science, Ansan University) ;
  • Jang, Hyung Seok (Department of Pathology, Hanyang University Medical Center) ;
  • Jin, Ga-Heon (Department of Ophthalmic Optics, Shinhan University)
  • 윤기남 (안산대학교 임상병리과) ;
  • 장형석 (한양대학교병원 병리과) ;
  • 진가헌 (신한대학교 안경광학전공)
  • Received : 2015.10.06
  • Accepted : 2015.11.23
  • Published : 2015.12.30

Abstract

Agaricus brasiliensis, belonging to the family Agaricaceae of Agaricales, Basidiomycota, has been used for edible and medicinal purposes. This study was initiated to evaluate the antioxidant, anti-diabetic, and nitric oxide inhibitory activities of fruiting bodies of A. brasiliensis extracted with methanol. The HPLC analysis of phenolic compounds from the mushroom extracts identified 10 phenolic compounds including gallic acid, procatechuic acid, chlorogenic acid, (-)-epicatechin, vanillin, rutin hydrate, naringin, quercetin, formononetin, and biochanin-A. The free radical scavenging activities of methanol extract were lower than that of positive control, BHT. The chelating effects of methanol extract were significantly higher than those of the positive control, BHT at the all concentrations tested. The methanol extract exhibited the lower reducing power activities compared with the positive control at the 0.5~6.0 mg/mL concentration. The mushroom extract inhibited the ${\alpha}$-glucosidase activity by 54.48% and 78.43% at the 1.0 and 2.0 mg/mL while acarbose, the positive control, inhibited the ${\alpha}$-glucosidase activity by 51.77% and 81.81% at the same concentrations, respectively. Nitric oxide (NO) production in lipopolysaccahride (LPS) induced RAW 264.7 cells were inhibited by the methanol extracts in a concentration dependent manner. Therefore, it is concluded that fruiting bodies of A. brasiliensis contained natural antioxidant, anti-diabetic, and anti-inflammatory substances which can be useful for human health.

신령버섯(Agaricus brasilliensis)는 식용과 약용으로 사용되고 있는 담자균류에 속하는 버섯이다. 본 연구에서는 신령버섯의 자실체를 메탄올과 열수를 이용해 추출한 물질의 항산화, 항당뇨 및 nitric oxide 생성 저해 효과에 대한 실험을 수행하였다. 고속액체 크로마토그래피를 이용해 이 버섯 자실체 추출물의 페놀성 화합물을 분석한 결과 gallic acid, procatechuic acid, chlorogenic acid, (-)-epicatechin, vanillin, rutin hydrate, naringin, quercetin, formononetin, biochanin-A 등 총 10종류의 페놀성 화합물이 확인되었다. 항산화 효과 실험에서 메탄올 추출물의 DPPH radical 소거능은 양성대조군으로 사용한 BHT에 비해 낮았지만 비교적 효과가 우수하였으며, 철 이온 제거 항산화 효과는 메탄올 추출물이 양성대조군인 BHT에 비해 모든 실험 농도에서 유의성 있게 높았다. 환원력의 경우 이 버섯의 추출물은 양성대조군에 비해 모두 모든 농도에서 효과가 낮게 나타났다. 항당뇨 실험에서 ${\alpha}$-glucosidase에 대한 메탄올추출물의 저해효과는 1.0 mg/mL와 2.0 mg/mL의 농도에서 각각 54.48%와 78.43%를 보여 양성대조군인 acarbose의 51.77%과 81.81%에 비해 조금 낮았다. 염증저해 효과 실험에서 RAW 264.7 대식세포가 배양되고 있는 배지에 신령버섯 자실체의 메탄올과 열수추출물을 각각 전 처리 한 후 염증 매개 물질인 LPS를 투여하여 메탄올과 열수 추출물의 NO 생성 저해효과를 조사한 결과 추출물의 농도가 증가함에 따라 대식세포에 생성된 NO의 양이 감소하는 경향을 나타내어 높은 농도에서 저해효과가 우수한 것으로 나타났다. 따라서 신령버섯의 자실체에는 항산화, 항당뇨, 및 항염증 효과를 나타내는 천연물질이 함유되어 있어서 이를 섭취할 경우 건강에 유용한 것으로 생각되었다.

Keywords

References

  1. Alam N, Yoon KN, Lee KR, Lee JS, Lee TS. Phenolic compounds concentration and appraisal of antioxidant and antioxidant and antityrosinase activities from the fruiting bodies of Pleurotus eryngii. Adv Environ Biol. 2011, 5:1104-1113.
  2. Blois MS. Antioxidant determination by the use of a stable free radical. Nature. 1958, 181:1199-1200. https://doi.org/10.1038/1811199a0
  3. Carvajal AE, Koehnlein EA, Soares AA, Eler GJ, Nakashima ATA, Bracht A, et al. Bioactives of fruiting bodies and submerged culture mycelia of Agaricus brasiliensis (A. blazei) and their antioxidant properties. LWT-Food Sci Technol. 2012, 46:493-499. https://doi.org/10.1016/j.lwt.2011.11.018
  4. Gulcin I, Buyukokuroglu ME, Oktay M, Kufrevioglu OI. Antioxidant and analgesic activities of turpentine of Pinus nigra Arn. subsp. pallsiana (Lamb.) Holmboe. J. Ethnopharmacol. 2003, 86;51-58. https://doi.org/10.1016/S0378-8741(03)00036-9
  5. Kang HW. Antioxidant and anti-inflammatory effects of extracts from Flammulina velutipes (Curtis) Singer. J Kor Soc Food Nut. 2012. 41:1072-1078. https://doi.org/10.3746/jkfn.2012.41.8.1072
  6. Kim MY, Seguin P, Ahn JK, Kim JJ, Chun SC, Kim EH, et al. Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea. J Agric Food Chem. 2008, 56:7265-7270. https://doi.org/10.1021/jf8008553
  7. Kim HS, Kim TW, Kim DJ, Lee JS, Kim KK, Choe M. Antioxidant activities and ${\alpha}$-glucosidase inhibitory effect of water extracts from medicinal plants. Korean J Med Crop Sci. 2013, 21(3):197-203. https://doi.org/10.7783/KJMCS.2013.21.3.197
  8. Lee YL, Yen M, Mau JL. Antioxidant properties of various extracts from Hypsizigus marmoreus. Food Chem. 2007b, 104:1-9. https://doi.org/10.1016/j.foodchem.2006.10.063
  9. Lee SJ, Song, EJ, Kim KBWR, Lee CJ, Jung JY, Kwak JH, et al. Inhibitory Effects of Sargassum thunbergii ethanol extract against ${\alpha}$-amylase. Kor J Fish Aquat Sci. 2010, 43(6):648-653.
  10. Lee HJ, Do JR, Jung SK, Kim HK. Physiological properties of Sarcodon aspratus extracts by ethanol concentration. J Kor Soc Food Sci Nutr. 2014, 43(5):656-660. https://doi.org/10.3746/jkfn.2014.43.5.656
  11. Mahmud, T, Tornus I, Egelkrout E, Woif E, Uy C, Floss HG, et al. Biosynthetic studies on the ${\alpha}$-glucosidase inhibitor acarbose in Actinoplanes sp.; 2-epi-5-epi-valiolone is the direct precursor of the valienamine moiety. J Amer Chem Soc. 1999, 121:6973-6983. https://doi.org/10.1021/ja991102w
  12. Mau JL, Chang CN, Huang SJ, Chen CC. Antioxidant properties of methanolic extracts from Grifola frondosa, Morchella esculenta, and Termitomyces albuminosus mycelia. Food Chem. 2004. 87:111-118. https://doi.org/10.1016/j.foodchem.2003.10.026
  13. Mizuno T. Medicinal properties and clinical effects of culinary medicinal mushroom Agaricus blazei Murrill (Agaricomycetidae). Int J Med Mushrooms. 2002, 4:299-312.
  14. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Immunol Meth. 1983, 65:55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  15. Nguyen TK, Shin DB, Lee KR, Shin PG, Cheong JC, Yoo YB, et al. Antioxidant and anti-inflammatory activities of fruiting bodies of Dyctiophora indusiata. J Mushroom Sci Prod. 2013, 11(4):269-277. https://doi.org/10.14480/JM.2013.11.4.269
  16. Prasad NK, Divakar S, Shivamurthy GR, Aradhya SM. Isolation of a free radical scavenging antioxidant from water spinach (Ipomoea aquatica Forsk). J Sci Food Agri. 2005, 85:1461-1468. https://doi.org/10.1002/jsfa.2125
  17. Ryu JH, Ahn H, Kim, JY, Kim, YK. Inhibitory activity of plant extracts on nitric oxide synthesis in LPS-activated macrophage. Phytother Res. 2003, 17:485-489 https://doi.org/10.1002/ptr.1180
  18. Shim SM, Im KH, Lee UY, Kim JW, Shim MJ, Lee MW, et al. Studies on immuno-modulatory and antitumor effects of crude polysaccharides extracted from Paecilomyces sinclairii. Kor J Mycol. 2003, 31:155-160. https://doi.org/10.4489/KJM.2003.31.3.155
  19. Tsai SY, Huang SJ, Mau JL. Antioxidant properties of hot water extracts from Agrocybe cylindracea. Food Chem. 2006, 98:670-677. https://doi.org/10.1016/j.foodchem.2005.07.003
  20. Um SN, Jin GE, Park KW, Yu YB, Park KM. Physiological activity and nutritional composition of Pleurotus species. Kor J Food Sci Technol. 2010, 42(1):90-96.
  21. Wasser SP, Weis AL. Medicinal properties of substances occurring in higher basidiomycete mushrooms: current perspectives (Review). Internat. J Med Mushrooms. 1999, 1:31-62 https://doi.org/10.1615/IntJMedMushrooms.v1.i1.30
  22. Worthington, editors. Worthington enzyme manual. 1993. p36-261. Worthington Biochemical Corp., Freehold.
  23. Yena GC, Duhb PD, Tsaia L. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem. 2002, 79:307-313. https://doi.org/10.1016/S0308-8146(02)00145-0

Cited by

  1. 다양한 암세포 주와 MSCs에 대한 Saccharin의 항증식성 평가 vol.48, pp.3, 2016, https://doi.org/10.15324/kjcls.2016.48.3.169
  2. 관절염 치료에 사용되는 한약재들의 항 염증 활성과 기전에 관한 연구 vol.48, pp.3, 2015, https://doi.org/10.15324/kjcls.2016.48.3.176
  3. Antioxidant and Antimicrobial Activities of Fruiting Bodies of Phellinus gilvus Collected in Korea vol.48, pp.4, 2016, https://doi.org/10.15324/kjcls.2016.48.4.355
  4. Antioxidant and Antimicrobial Activities of Fruiting Bodies of Phellinus gilvus Collected in Korea vol.48, pp.4, 2016, https://doi.org/10.15324/kjcls.2016.48.4.355
  5. 고지방과 콜레스테롤 식이로 유도된 고지혈증 흰쥐에서 노루궁뎅이버섯의 항고지혈증 효과 vol.49, pp.3, 2017, https://doi.org/10.15324/kjcls.2017.49.3.263
  6. 마른진흙버섯 자실체의 Xanthine Oxidase, Cholinesterase 및 염증 저해 효과 vol.50, pp.3, 2015, https://doi.org/10.15324/kjcls.2018.50.3.225
  7. RWPE-1 전립선세포에서 eritadenine을 함유한 신령버섯균사체 액체배양물의 항염증효과 및 항산화효과에 의한 전립선비대증 관련 biochemical marker 개선 효과 vol.28, pp.10, 2015, https://doi.org/10.5352/jls.2018.28.10.1147
  8. 신령버섯에서 분리된 Glucosylceramide 및 Sterol의 피부 세포 개선 효과 vol.46, pp.2, 2015, https://doi.org/10.15230/scsk.2020.46.2.105
  9. Eruca sativa 에칠아세테이트와 부탄올 분획물의 미백 및 항균효과를 이용한 화장품 응용연구 vol.38, pp.3, 2015, https://doi.org/10.12925/jkocs.2021.38.3.651