DOI QR코드

DOI QR Code

Shifts of Geographic Distribution of Pinus koraiensis Based on Climate Change Scenarios and GARP Model

GARP 모형과 기후변화 시나리오에 따른 잣나무의 지리적 분포 변화

  • Chun, Jung Hwa (Division of Forest Ecology, Korea Forest Research Institute) ;
  • Lee, Chang Bae (Korea Green Promotion Agency) ;
  • Yoo, So Min (Division of Forest Ecology, Korea Forest Research Institute)
  • 천정화 (국립산림과학원 산림생태연구과) ;
  • 이창배 (산림청 녹색사업단) ;
  • 유소민 (국립산림과학원 산림생태연구과)
  • Received : 2015.09.11
  • Accepted : 2015.12.11
  • Published : 2015.12.30

Abstract

The main purpose of this study is to understand the potential geographic distribution of P. koraiensis, which is known to be one of major economic tree species, based on the RCP (Representative Concentration Pathway) 8.5 scenarios and current geographic distribution from National Forest Inventory(NFI) data using ecological niche modeling. P. koraiensis abundance data extracted from NFI were utilized to estimate current geographic distribution. Also, GARP (Genetic Algorithm for Rule-set Production) model, one of the ecological niche models, was applied to estimate potential geographic distribution and to project future changes. Environmental explanatory variables showing Area Under Curve (AUC) value bigger than 0.6 were selected and constructed into the final model by running the model for each of the 27 variables. The results of the model validation which was performed based on confusion matrix statistics, showed quite high suitability. Currently P. koraiensis is distributed widely from 300m to 1,200m in altitude and from south to north as a result of national greening project in 1970s although major populations are found in elevated and northern area. The results of this study were successful in showing the current distribution of P. koraiensis and projecting their future changes. Future model for P. koraiensis suggest large areas predicted under current climate conditions may be contracted by 2090s showing dramatic habitat loss. Considering the increasing status of atmospheric $CO_2$ and air temperature in Korea, P. koraiensis seems to experience the significant decrease of potential distribution range in the future. The final model in this study may be used to identify climate change impacts on distribution of P. koraiensis in Korea, and a deeper understanding of its correlation may be helpful when planning afforestation strategies.

본 연구는 그간 우리나라에서 경제적인 가치를 인정 받아온 수종인 잣나무를 대상으로 잣나무의 현존 분포를 파악하고, RCP (Representative Concentration Pathway) 8.5 기후변화 시나리오와 생태적 지위 모형에 기반하여 향후 잣나무의 분포 변화를 예측하기 위해 수행되었다. 이를 위해 5년간의 NFI 자료에서 조사지점별 잣나무의 풍부도 자료를 추출하여 사용하였으며, 수종에 영향을 미치는 환경요인변수를 선정하기 위해 생태적 지위 모형 가운데 하나인 GARP (Genetic Algorithm for Rule-set Production)를 이용하였다. 총 27개의 환경요인변수에 대해 각각 모형을 구동하고 컨퓨전 매트릭스(Confusion Matrix) 기반 산출 통계량인 AUC (Area Under Curve)가 0.6 이상인 변수들을 선발하여 최종 잠재분포모형을 작성하였다. 그 결과 작성된 모형은 비교적 높은 적합도를 나타냈는데 잣나무는 현재 표고의 범위가 300m에서 1,200m 사이인 지역 및 남부에서 북부에 이르기까지 넓게 자리 잡고 있는 것으로 나타났다. 작성된 모형에 RCP 8.5 기후변화 시나리오를 적용한 결과, 잣나무는 2020년대부터 잠재분포역이 큰 폭으로 축소되며, 2090년대에는 우리나라 대부분의 지역이 잣나무의 생육에 불리할 것으로 예측되었다. 본 연구를 통해 기후변화가 잣나무 분포에 미치는 영향을 파악하고, 잣나무와 기후변화와의 상관성에 대한 이해를 높임으로써 향후 지역별 조림수종 선정 및 경제수종 교체 등의 조림적 관점에서 도움이 될 수 있을 것으로 판단된다.

Keywords

References

  1. Anderson, R. P., M. Gomez-Laverde, and A. T. Peterson, 2002: Geographical distributions of spiny pocket mice in South America: Insights from predictive models. Global Ecology and Biogeography 11, 131-141. https://doi.org/10.1046/j.1466-822X.2002.00275.x
  2. Bae, S. W., J. H. Hwang, S. T. Lee, H. S. Kim and J. M. Jeong, 2010: Change in soil temperature, moisture content, light availability and diameter growth after thinning in Korean Poin (Pinus koraiensis) plantation. Journal of Korea Forest Society 99(3), 397-403.
  3. Chon, S. K., M. Y. Shin and D. J. Chung, 1999: Characteristics of the Early Growth for Korean White Pine (Pinus koraiensis Sieb. et Zucc.) and Effects of Local Climatic Conditions on the Growth-Relation between Periodic Annual Increment and Local Climate Conditions. Journal of Korea Forest Society 88(1), 73-85.
  4. Christopher, D. W., 2003: Engineering psychology. Sigma press, 678pp.
  5. Chun, J. H., and C. B. Lee, 2013: Assessing the Effects of Climate Change on the Geographic Distribution of Pinus densiflora in Korea using Ecological Niche Model. Korean Journal of Agricultural and Forest Meteorology 15(4), 219-233. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2013.15.4.219
  6. Choi, S. H., W. K. Lee, S. J. Yoo, S. M. Park, J. G. Byun and G. S. Cui, 2009: Simulation on vegetation cover and terrestrial carbon distribution by climate change in Korea. Proceedings of GIS Autumn Conference, 138-139. (in Korean with English abstract)
  7. Elith, J., M. A. Burgman and H. M. Regan, 2002: Mapping epistemic uncertainties and vague concepts in predictions of species distribution. Ecological Modelling 157, 313-329. https://doi.org/10.1016/S0304-3800(02)00202-8
  8. FAO, 2011: State of the World's Forest. 164pp.
  9. Han, S. S. and W. G. Park, 1988: Diameter Growth and Key-year in Pinus koraiensis and Pinus densiflora Trees. Journal of Korea Forest Society 77(2), 216-221. (in Korean with English abstract)
  10. Kang, W. M., D. Kang, and C. R. Park, 2012: Decreased Habitat Area and Connectivity of Kalopanax pictus under Climate Change in South Korea. Proceeding of The 55th symposium of International Assocation for Vegetation Science, Organizing Committee of IAV2012, Mokpo Korea, 102pp.
  11. Korea Environment Institute, 2000: Evaluation of the Ecological Effect and Corresponding Strategy Due to Climate Change 1. Forest Ecology, 86pp.
  12. Korea Forest Research Institute, 2007: 2007 Annual Report, Korea Forest Service, 1103pp.
  13. Korea Forest Research Institute, 2009: 2009 Annual Report, Korea Forest Service, 771pp.
  14. Korea Forest Research Institute, 2011: 2011 Annual Report -Forest Conservation, Korea Forest Service, 694pp.
  15. Korea Forest Research Institute, 2012: Economic Tree Species Pinus koraiensis, Korea Forest Service, 168pp.
  16. Millennium Ecosystem Assessment, 2005: Ecosystems and Human Well-Being: Current State and Trends. Volume 1. R. Hassan, R. Scholes, and N. Ash (Eds.). Island Press, 137pp.
  17. Peterson, A. T., D. R. B. Stockwell, and D. A. Kluza, 2002: Distributional prediction based on ecological niche modeling of primary occurrence data. In: Scott, J. M., P. J. Heglund, M. L. Morrison (Eds.), Predicting Species Occurrences: Issues of Scale and Accuracy. Island Press, Washington, D.C, 617-623pp.
  18. Pearson, R. G. and T. P. Dawson, 2003: Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful. Global Ecology and Biogeography 12, 361-371. https://doi.org/10.1046/j.1466-822X.2003.00042.x
  19. Pulliam, H. R., 1988: Sources, sinks, and population regulation. The American Naturalist 132, 652-661. https://doi.org/10.1086/284880
  20. Scholes, R. J. and M. R. van der Merwe, 1996: Sequestration of Carbon in Savannas and Woodlands. The Environmental Professional 18, 96-103.
  21. Stehman, S. V., 1997: Selecting and interpreting measures of thematic classification accuracy. Remote Sensing of Environment 62(1), 77-89. https://doi.org/10.1016/S0034-4257(97)00083-7
  22. Stockwell, D. R. B. and A. T. Peterson, 2002: Effects of sample size on accuracy of species distribution models. Ecological Modeling 148, 1-13. https://doi.org/10.1016/S0304-3800(01)00388-X
  23. Swets, J. A., 1988: Measuring the accuracy of diagnostic systems. Science 240, 1285-1293. https://doi.org/10.1126/science.3287615
  24. The National Weather Service, 2013: Summary for decision maker of police in accordance with a scientific basis, 28pp.
  25. The National Weather Service, 2015: 2014 Climate Change Report, 155pp.
  26. Weiss, A. D., 2001: Topographic Position and Landforms Analysis. Poster presentation. Proceedings of ESRI User Conference, San Diego, CA
  27. Yim, Y. J., 1977: Distribution of forest vegetation and climate in the Korean peninsula III. Distribution of tree species along the thermal gradient. Japanese Journal of Ecology 27, 177-189.

Cited by

  1. Brief history of Korean national forest inventory and academic usage vol.43, pp.3, 2016, https://doi.org/10.7744/kjoas.20160032