DOI QR코드

DOI QR Code

Comparison of Genetic Variation between Pre-practice Mature Trees and Post-practice One-year Old Seedlings in Pinus densiflora Natural Regeneration Stands

소나무 천연갱신림내 성목과 치수의 유전변이 비교

  • Ahn, Ji Young (Devision of Forest Genetic Resources, National Institute of Forest Science) ;
  • Lee, Jei Wan (Devision of Forest Genetic Resources, National Institute of Forest Science) ;
  • Lee, Seok Woo (Devision of Forest Genetic Resources, National Institute of Forest Science) ;
  • Baek, Seung Hoon (Devision of Forest Genetic Resources, National Institute of Forest Science) ;
  • Lim, Hyo In (Devision of Forest Genetic Resources, National Institute of Forest Science) ;
  • Kim, Hyun Seop (Forest Practice Research Center, National Institute of Forest Science)
  • 안지영 (국립산림과학원 산림유전자원과) ;
  • 이제완 (국립산림과학원 산림유전자원과) ;
  • 이석우 (국립산림과학원 산림유전자원과) ;
  • 백승훈 (국립산림과학원 산림유전자원과) ;
  • 임효인 (국립산림과학원 산림유전자원과) ;
  • 김현섭 (국립산림과학원 산림생산기술연구소)
  • Received : 2015.05.08
  • Accepted : 2015.10.01
  • Published : 2015.12.31

Abstract

We studied the genetic impact of natural regeneration practices, such as Single seed tree, Group seed tree, Patch clear cutting and Alternate strip clear cutting systems, by comparing the nuclear microsatellite(nSSR) variation of post-practice natural regeneration one-year old seedlings of Pinus densiflora to that of pre-practice mature trees. The levels of genetic diversity of seedlings (A=13.6, $A_e$=4.3, $H_o$=0.571, $H_e$=0.597) were similar to those of mature trees (A=13.4, $A_e$=4.3, $H_o$=0.596, $H_e$=0.598) and the differences in the level of genetic diversity between seedlings and mature trees for each of the practices were not statistically significant. The degree of genetic differentiation between seedlings and mature trees was very low ($F_{ST}$=0.002) and the pairwise $F_{ST}$ values between seedlings and mature trees for all practices were less than 0.01. Overall, the natural regeneration practices appeared to have only minor impacts on the genetic diversity and the genetic composition in the studied P. densiflora stands. For a better understanding of the genetic effects of natural regeneration practices, subsequent studies such as temporal genetic variation of seedlings formed by crossing among post-practice mature trees should be considered.

단목모수, 군상모수, 군상개벌, 대상개벌 등의 천연갱신 방법이 적용된 소나무림의 nSSR 유전변이를 조사하였다. 작업(벌채) 전 성목과 작업 후 임내에서 자연 발생한 1년생 치수들의 유전다양성을 비교한 결과 큰 차이가 없는 것으로 나타났으며(성목: A=13.4; $A_e$=4.3; $H_o$=0.596; $H_e$=0.598, 치수: A=13.6; $A_e$=4.3; $H_o$=0.571; $H_e$=0.597), 각각의 작업종에서도 통계적으로 유의한 차이를 발견할 수 없었다. 성목과 치수의 유전분화 정도는 매우 낮은 것으로 나타났으며($F_{ST}$=0.002), 각 작업종별 유전분화 정도 역시 낮은 값($$F_{ST}{\leq_-}0.01$$)을 보여 작업 전, 후 임분의 유전구조 변화는 크지 않은 것으로 추정되었다. 결과적으로 본 연구가 수행된 소나무 임분의 경우 유전다양성과 유전적 조성 변화에 미치는 천연갱신 작업종의 효과가 두드러지지 않은 것으로 나타났다. 그러나, 천연갱신 작업종이 유전변화에 미치는 영향을 보다 정확하게 평가하기 위해서는 작업 후 남겨진 개체(모수)의 교배로부터 발생한 치수들의 시계열적 유전변이와 유전구조 변화를 지속적으로 추정할 필요가 있는 것으로 판단된다.

Keywords

References

  1. Bae, S.W. 1994. Structure and tending method for naturally regenerated young Pinus densiflora Sieb. et Zucc. stands. Journal of Korean Forest Society 83(1): 50-62 (in Korean).
  2. Buchert, G.P., Rajora, O.P. and Hood, J.V. 1997. Effects of harvesting on genetic diversity in old-growth eastern white pine in Ontario, Canada. Conserved Biology 11: 747-758. https://doi.org/10.1046/j.1523-1739.1997.96074.x
  3. Chung, S.H., Kang, S.G. and Kim J.H. 2005. The natural regeneration patterns of hardwood sprouts and pine seedlings by thinning intensities in a Pinus densiflora stand. Proceedings of the 2005 summer meeting of the Korean Forest Society. pp. 91-93 (in Korean).
  4. El-Kassaby, Y.A., Dunsworth, B.G. and Krakowski, J. 2003. Genetic evalution of alternative silvicultural systems in coastal montane forests: western hemlock and amabilis fir. Theoretical and Applied Genetics 107: 598-610. https://doi.org/10.1007/s00122-003-1291-3
  5. Fageria, M.S. and Rajora, O.P. 2014. Effects of silvicultural practices on genetic diversity and population structure of white spruce in Saskatchewan. Tree genetics & Genomes 10: 287-296. https://doi.org/10.1007/s11295-013-0682-0
  6. Farris, M.A. and Mitton, J.B. 1984. Population density, outcrossing rate and heterozygote superiority in ponderosa pine. Evolution 38: 1151-1154. https://doi.org/10.2307/2408448
  7. Fujihara, M., Hada, Y. and Toyohara, G. 2002. Changes in the stand structure of a pine forest after rapid growth of Quercus serrata Thunb. Forest Ecology and Management 170: 55-65. https://doi.org/10.1016/S0378-1127(01)00779-4
  8. Hong, K.N., Lee, S.W., Jeong, J.M., Jang, G.H., and Kang, B.L. 2004. Spatial distribution of genetic variation at a small stand of Pinus densiflora regenerated after clearcut in Anmyon Island, Korea. Journal of Korean Forest Society 93(1): 35-42 (in Korean).
  9. Hong, S.C., Joo, S.H., Cho, H.J., Bae, K.H., Moon, H.S., Lee, Y.G., Park, M.S., Hur, T.C. Oh, S.H., Lee, J.H., and Cho, G.H., 2006. Development of effective natural regeneration system in Pinus densiflora forest. Ministry of Agriculture and Forestry. Sejong. pp. 163-185 (in Korean).
  10. Kang, H.K., Park, J.Y., Ahn, S.K., Cho, Y.H., Park, B.J., Kim, W.T., Shin, K.J., Eo, Y.J., and Song, H.S. 2014. Germination of buried seeds in secondary forest of Basla Zone. - Coniferous and Broadleaved Forest of low slope, Yesan-gun, Korea - Korean Journal of Environmental Ecology 28(6): 705-714 (in Korean). https://doi.org/10.13047/KJEE.2014.28.6.705
  11. Knowles, P. 1985. Comparison of isozyme variation among natural stands and plantations: Jack pine and black spruce. Canadian Journal of Forest Research 15(5): 902-908. https://doi.org/10.1139/x85-145
  12. Ledig, F.T. 1992. Human impacts on genetic diversity in forest ecosystems. Oikos 63(1): 87-108. https://doi.org/10.2307/3545518
  13. Lee, D.G. 2012. Statistical yearbook of Forestry. Korea Forest Service. Daejeon, Korea. pp. 491 (in Korean).
  14. Lee, D.G., Kwon, K.C., Lim, S.J., Park, P.S., Shin, J.H., Shin, M.Y., Han, W.S., Chung, S.Y., Jeon, E.J., Hwang, J.H., Kim, G.T., Um, T.W., Kim, N.H., Ahn, H.H., Kim, H.J., Kwon, K.W., and Kim, J.H. 2008. Regeneration system for Korean forest. East Korea Forest Service. Gangneung. pp. 47 (in Korean).
  15. Lee, K.J., Bae, S.W., Hwang, J.H., Lee, K.S., Kim, Y.S., Kim, S.K., Kang, Y.J. Baek, U.S., and Kim, H.S. 2008. Silvicultural practices of Pinus densiflora forest. Korea forest research institute. Seoul. pp. 69 (in Korean).
  16. Lee, S.W., Jang, S.S., Jang, K.H., and Kim, C.S. 2003. Estimation of mating system parameters in the Natural population of Pinus densiflora of Anmyun Island, Korea using allozyme markers. Journal of Korean Forestry Society 92(2): 121-128.
  17. Lian, C., Miwa, M and Hogetsu, T. 2000. Isolation and characterization of microsatellite loci from the Japanese red pine, Pinus densiflora. Molecular Ecology 9: 1186-1188. https://doi.org/10.1046/j.1365-294x.2000.00954-10.x
  18. Liewlaksaneeyanawin, C., Ritland, C. E., El-Kassaby, Y.A. and Ritland, K. 2004. Single-copy, species-transferable microsatellite markers developed from loblolly pine ESTs. Theoretical applied and Genetics 109: 361-369.
  19. Namkoong, G. 1992. Biodiversity - issues in genetics, forestry and ethics. Forestry Chronicle 68(4): 438-443. https://doi.org/10.5558/tfc68438-4
  20. Nowakowska, J.A., Zachara, T. and Konecka, A. 2014. Genetic variability of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies L. Karst.) natural regeneration compared with their maternal stands. Lesne Prace Badawcze (Forest Research Papers) 75(1): 47-54.
  21. Peakall, R. and Smouse, P.E. 2006. GENEALEX 6: genetic analysis in Excel. population genetic software for teaching and research. Molecular Ecology Notes 6: 288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x
  22. Rajora, O.P. 1999. Genetic biodiversity impacts of silvicultural practices and phenotypic selection in white spruce. Theoretical and Applied Genetics 99: 954-961. https://doi.org/10.1007/s001220051402
  23. Rajora, O.P., Rahman, M.H., Buchert, G.P., and Dancik, B.P. 2000. Microsatellite DNA analysis of genetic effects of harvesting in old-growth eastern white pine (Pinus strobus) in Ontario, Canada. Molecular Ecology 9: 339-348. https://doi.org/10.1046/j.1365-294x.2000.00886.x
  24. Rajora, O.P. and Pluhar, S.A. 2003. Genetic diversity impacts of forest fires, forest harvesting, and alternative reforestation practices in black spruce (Picea mariana). Theoretical and applied Genetics 106: 1203-1212. https://doi.org/10.1007/s00122-002-1169-9
  25. Ratnam, W., Rajora, O.P., Finkeldey, R., Aravanopoulos, F., Bouvet, J.M., Vaillancourt, R.E., Kanashiro, M., Fady, B., Tomita, M., and Vinson, C. 2014. Genetic effects of forest management practices: Global synthesis and perspectives. Forest Ecology and Management 333: 52-65. https://doi.org/10.1016/j.foreco.2014.06.008
  26. Thomas, B.R., Macdonald, S.E., Hicks, M., Adams, D.L., and Hodgetts, R.B. 1999. Effects of reforestation methods on genetic diversity of lodgepole pine: an assessment using microsatellite and randomly amplified polymorphic DNA markers. Theoretical and Applied Genetics 98: 793-801. https://doi.org/10.1007/s001220051136
  27. Watanabe, A., Iwaizumi, M.G., Ubukata, M., Kondo, T., Lian, C., and Hogetsu, T. 2006. Isolation of microsatellite markers from Pinus densiflora Sieb. et Zucc. using a dual PCR technique. Molecular Ecology Notes 6: 80-82. https://doi.org/10.1111/j.1471-8286.2005.01145.x

Cited by

  1. Pine Forest Soil Characteristics and Major Soil Impact Factors for Natural Regeneration vol.50, pp.3, 2017, https://doi.org/10.7745/kjssf.2017.50.3.179