DOI QR코드

DOI QR Code

Study on Bursting Stress in Anchorage Zone of Prestressed Concrete Using Circular Anchorages

원형 정착구를 적용한 프리스트레스트 콘크리트 정착구역의 파열력에 관한 연구

  • Received : 2014.10.22
  • Accepted : 2014.11.24
  • Published : 2015.01.30

Abstract

Bursting stress in anchorage zone of post tension girder can be estimated based on Guyon's equation. The major parameters in calculating bursting stress are prestressing force and the distance ratio between concrete edge and anchorage plate. Although Guyon's equation can be applied to calculate bursting stress for rectangular typed as well as circular typed plate, there is some limitation of accuracy due to 2 dimensional analysis. Therefore this study is proposed to suggest a bursting stress equation based on 3 dimensional finite element method.

포스트텐션 공법의 파열력 계산은 탄성이론을 기반으로 한 Guyon의 제안식이 널리 활용되고 있다. Guyon의 파열력 계산식은 프리스트레스 힘과 콘크리트 단면 길이에 대한 정착판 단면 길이의 비가 주요 변수 이다. Guyon이 제시한 파열력 계산 방법은 사각형 정착판이 적용된 정착구를 기준으로 하고 있으나, 원형 정착구에 대해서도 그대로 적용하고 있다. 또한 Guyon은 정착구역에서 발생하는 복잡한 응력을 2차원으로 단순화하였다. 따라서 본 연구에서는 원형 정착구에 적용 가능 한 파열력 계산식을 제안하기 위하여 기존 이론의 분석과 정착구역에서 발생하는 응력에 대해 3차원 분석을 수행하였다. 기존의 파열력 계산식을 개선한 원형 정착구의 파열력 계산식을 제안하였다.

Keywords

References

  1. Breen, J. E., Burdet, O., Roberts, C., Sanders, D., and Wollmann G. (1994), Anchorage Zone Reinforcement for Post-Tensioned Concrete Girders, National Cooperative Highway Research Program Report 356, Washington, D. C., 8-11.
  2. Choi, K. H. (2013), Study on the Load Transfer Capacity of Circular Anchorage for Prestressed Concrete, Ph.D. dissertation, Wonju, Kangwon: Sangji University, Department of Civil Engineering.
  3. Chung, J. S., Koo, H. S. (2001), Minimization of Bursting Force at Anchorage Zone Using Prestressing Order for PSC Box Girder Bridge, Journal of the Korea Institute for Structural Maintenance and Inspection, KSMI, 5(2), 103-109.
  4. EOTA (2011), European Technical Approval ETA-06/0022, European Organization for Technical Approvals, Germany, 21-45.
  5. Freyssinet (2010), Freyssinet Prestressing, Freyssinet, France, 7-13.
  6. Guyon, Y. (1953), Prestressed Concrete, John Wiley and Sons, Inc., New york.
  7. Iyengar, K. T. S. R., and Yoganada, C. A. (1966), A Three Dimensional Stress Distribution Problem in the Anchorage Zone of a Post-Tensioned Concrete Beam, Magazine of Concrete Research, 18(55), 75-88. https://doi.org/10.1680/macr.1966.18.55.75
  8. Kim, H. W. (2010), Detail Analysis of PSC Beam Anchorage, Master dissertation, Wonju, Kangwon: Sangji University, Department of Civil Engineering, 46-58.
  9. Leonhardt, F. (1973), Das Bewehren von Stahlbetontragwerken, Beton-Kalender, von Wilhelm e. & sohn.
  10. Lim, D. H. (1994), Anchorage Zone Behavior and Analysis of Precast Prestressed Concrete Box-Girder Bridges, Ph.D. dissertation, Seoul : Seoul National University, Department of Civil Engineering.
  11. Morsch, E. (1924), Uber die Berechnung der Gelenkquader, Beton-und Eisen, 12, 156-161.
  12. Oh, B. H. (1997), Stress Distribution and Cracking Behavior at Anchorage Zone in Prestressed Concrete Members, ACI structural journal, ACI, 94(5), 549-557.
  13. VSL KOREA (2012), Post-Tensioning System, VSL KOREA, SEOUL, 7-15.
  14. W. C. Stone, W. Paes-Filho, J. E. Breen (1981), Behavior of Post-tensioned Girder Anchorage Zones, Center for Transportation Research, Austin, 73-81.

Cited by

  1. ETAG 013 규정에 따른 원형 정착구의 하중전달실험 vol.19, pp.5, 2015, https://doi.org/10.5762/kais.2018.19.5.167
  2. Design equation to evaluate bursting forces at the end zone of post-tensioned members vol.24, pp.5, 2019, https://doi.org/10.12989/cac.2019.24.5.423