DOI QR코드

DOI QR Code

Evaluation of Properties of Polymer-Modified Mortar with CSA

CSA를 혼입한 폴리머 시멘트 모르타르의 성능평가

  • 주명기 (상지대학교 건설시스템공학과) ;
  • 노병철 (상지대학교 건설시스템공학과)
  • Received : 2014.09.25
  • Accepted : 2014.11.05
  • Published : 2015.01.30

Abstract

Two main parameters were examined such as CSA content and polymer-binder ratio to find effects on the strength, water absorption, chloride ion penetration depth, carbonation depth, length change and chemical resistance of polymer-modified mortar with CSA and EVA polymer powder (EVAPP). As results, compressive, flexural, tensile, adhesive strengths, and length change of the polymer-modified mortar with CSA and EVAPP increases with increasing CSA content and polymer-binder ratio, although the water absorption, chloride ion penetration depth, and carbonation depth decrease with increasing polymer-binder ratio and CSA content, and also the chemical resistance decreases. Such strength and durability development is attributed to the high tensile strength of EVA polymer and the improved bond between cement hydrates and aggregates because of the addition of EVAPP and CSA.

본 연구에서는 CSA를 혼입한 폴리머 시멘트 모르타르의 강도, 흡수율, 염화 이온 침투 깊이, 중성화 깊이, 길이변화 및 내약품성에 미치는 영향에 대하여 실험적으로 구명하였다. 그 결과, CSA를 혼입한 폴리머 시멘트 모르타르의 압축, 휨, 인장 및 부착강도는 CSA 첨가량 및 폴리머-시멘트비가 증가함에 따라 증가하였다. 흡수율은 CSA 첨가량 및 폴리머-시멘트비가 증가함에 따라 감소하였다. 길이변화는 CSA 첨가량 및 폴리머-시멘트비가 증가함에 따라 감소하였다. 염화 이온 침투깊이 및 중성화 깊이는 CSA 첨가량 및 폴리머-시멘트비가 증가함에 따라 감소하였다. 또한, 내약품성은 CSA 첨가량 및 폴리머-시멘트비가 증가함에 따라 감소하였다. 이와 같은 강도 및 내구성 개선은 EVA 폴리머의 높은 인장강도에 기인하며, EVA 폴리머 및 CSA 혼입에 의하여 시멘트 수화물과 골재사이의 부착력이 개선되기 때문이라 판단된다.

Keywords

References

  1. Choi, S. J., Park, K. T., Kwon, S. J., (2014), Evaluation of Mechanical Properties and Crack Resistant Performance in Concrete with Steel Fiber Reinforcement and CSA Expansive Admixture, Journal of the Korea Institute for Structural Maintenance and Inspection, 18(1), 75-83. https://doi.org/10.11112/jksmi.2014.18.1.075
  2. Han, C. C., Lee, M. H., Park, J. M., Pei, C. C. (2006), Early quality improvement of concrete incorporating CSA admixture, Journal of Architectural Institute of Korea Structure & Construction, 22(4), 127-134.
  3. Innami, T. (2000), Effects of standard sand and mixing method on properties of polymer-modified mortars, master thesis nihon university, 103-118.
  4. Joeng, S. C., Song, M. S., Lee, K. H., Han, C. G. (2002), Hydration of expansive materials with CSA-system, Journal of KCI, 14(5), 631-637. https://doi.org/10.4334/JKCI.2002.14.5.631
  5. Joo, M. K., Jin, N. J., Yeon, K. S. (2002), Strength and durability of polymer-modified mortars using ground granulated blast-furance slag, Journal of Korea Concrete Institute, 14(2), 164-170. https://doi.org/10.4334/JKCI.2002.14.2.164
  6. Joo, M. K., Lee, Y. S., Youn, D. Y., Jung, I. S. (2005), Durability of high-fluidity polymer-modified mortar using redispersible polymer powder, Journal of Korea Concrete Institute, 17(5), 703-708. https://doi.org/10.4334/JKCI.2005.17.5.703
  7. Kwon, S. O., Bae, S. H., Lee, H. J., Jung, S. H. (2014), Durability of high volume fly ash concrete, Proceedings of tee Korea Concrete Institute, 26(1), 173-174.
  8. Lee, Y. S., Joo, M. K. (2003), Drying shrinkage and strength properties of ultrarapid-hardening polymer-modified mortar using redispersible polymer powder, Journal of Korea Concrete Institute, 15(3), 703-708.
  9. Moon, H. Y., Sea, J. W., Son, H. H. (1988), A study on the chemical resistance of concrete substituting fly ash, Journal of Korean Society of Civil Engineers, 8(1) 103-112.
  10. Ohama, Y. (1973), A study on the properties and mix propotions design of polymer-modified mortars for building construction, Construction research report, (65), 194-198.
  11. Ohama, Y., Demura, K., Lin, Z. (1990), Effects of mix propotions and curing conditions on strength properties of superhigh-strength mortars, CAJ proceedings of cement & concrete, (44), 674-679.
  12. Ohama, Y., Demura, K., Miyake, M. (1986), Diffusion of chloride ion in polymer-modified mortars and concretes, cement technology annual report, (40), 87-90.
  13. Ohama, Y., Miyara, M., Endo, M. (1985), Drying shrinkage and strength of steel fiber reinforced mortars containing shrinkage-reducing agent, The society of materials science, 34(376), 14-18. https://doi.org/10.2472/jsms.34.14
  14. Ohama, Y., Shiroishida, K. (1983), Temperature dependency of strength of polymer-modified mortars, Proceedings of the Twenty-sixth Japan Congress on Material Research, The Society of Materials Science, Japan, Kyoto, 195-199.
  15. Ohama, Y., Shiroishida, K., Miyake, T. (1982), Thermal resistance of polymer modified mortars, Proceedings of the Twenty-fifth Japan Congress on Material Research, The Society of Materials Science, Japan, Kyoto, Mar, 234-238.
  16. Okada, S. (1981), Handbook of concrete structures, asakura bookstore, 568-572.
  17. Pei, C. C., Lee, G. C., Park, J. M., Lee, S. H., Han, C. G. (2005), A study on early quality improvement of concrete incorporating CSA admixture, Journal of Korea Institute of Building Construction, 5(1), 25-28.
  18. Powers, T. C. (1965), Mechanisms of shrinkage and reversible creep of hardened cement paste, International Conference on the /structure of Concrete, Paper Gl, London, 319-344.
  19. Schneider, S. I., DeWacker, D. R., Palmer, J. G. (1993), Redispersible polymer powders for tough, flexible cement mortars, Polymer-Modified Hydraulic-Cement Mixtures, STP 1176, American Society for Testing and Materials, Philadelphia, 76-89.
  20. Smith, R. H., Mills, R. H. (1968), Variations in shrinkage of concrete resulting from the use of additives, proceedings of the RILEM/CEMBUREAU International Colloquium on the Shrinkage of Hydraulic Concrete, Vol. l, Instituo Eduardo Torroja, II-G.0-IIG.15.
  21. Tomida, R. (1988), Shrinkage-reducing agent, Journal of JCI, 26(3), 55-60.

Cited by

  1. Influence of polymer latex on the setting time, mechanical properties and durability of calcium sulfoaluminate cement mortar vol.169, pp.None, 2018, https://doi.org/10.1016/j.conbuildmat.2018.03.005
  2. Potential for significantly improving comprehensive performance of oil-well cement by a new type of latex vol.33, pp.12, 2021, https://doi.org/10.1680/jadcr.18.00149