DOI QR코드

DOI QR Code

Comparative Study of the Efficiency of GC with Large Volume Injector and SPE Clean-up Process Applied in QuEChERS Method

GC-대용량 주입장치와 SPE를 적용한 QuEChERS 잔류농약 분석법의 효율성 비교

  • Park, Young Jun (Chemical Safety Division, National Academy of Agricultural Science, RDA) ;
  • Hong, Su Myeong (Chemical Safety Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Taek Kyum (Department of Biological Environment, College of Agricultural and Life Sciences, Kangwon National University) ;
  • Kwon, Hye Young (Department of Biological Environment, College of Agricultural and Life Sciences, Kangwon National University) ;
  • Hur, Jang Hyun (Department of Biological Environment, College of Agricultural and Life Sciences, Kangwon National University)
  • 박영준 (국립농업과학원 화학물질안전과) ;
  • 홍수명 (국립농업과학원 화학물질안전과) ;
  • 김택겸 (강원대학교 농업생명과학대학 바이오자원환경학과) ;
  • 권혜영 (강원대학교 농업생명과학대학 바이오자원환경학과) ;
  • 허장현 (강원대학교 농업생명과학대학 바이오자원환경학과)
  • Received : 2015.09.24
  • Accepted : 2015.11.17
  • Published : 2015.12.31

Abstract

This study was conducted to compare STQ method, multi-residue method in Korean food code and QuEChERS method for validated selected and accuracy, reproducibility and efficiency. A total of 45 selected and targeted pesticides were the analyzed by GC and 5 of them were crops (apple, potato, green pepper, rice, soy bean). $R^2$ values were calculated in the standard calibration curve was over 0.990. Recovery tests were performed by three replications in two levels and the relative standard deviation of the repeated experiments was less than 30%. The average percentage of recoveries in the multi-residue method in Korean food code was 89.13%, QuEChERS method was 92.45% and STQ method was 85.28%. In addition, matrix effects in multi-residue method in Korean food code was 24.61%, QuEChERS method was 23.98% and STQ method showed 11.24%. The STQ method is easy and showed high clean-up effect in extracting the sample solution than the QuEChERS method and clean-up with C18, PLS, PSA cartridge columns. A large volume of the sample was injected in order to compensable for the problem, that occurred due to high detection limit in the analyser. When the STQ method was applied using a large volume injector, the standard calibration curve showed a higher linearity $R^2=0.990$, and method detection limit was 0.01 mg/kg. It showed an average recovery of 91.84% and the relative standard deviations of three replications repeated in two level process was less than 30% and had an average matrix effect of 17.90%.

본 연구는 STQ 분석법의 정확성(accuracy)과 재현성(reproducibility) 및 정제효과(efficiency)를 판별하고자 식품공전 다성분 동시 분석법 제 1법, QuEChERS 분석법과 회수율 시험 및 matrix effect의 조사를 실시하여 비교 분석하였다. 시험에 사용한 시료 및 장비는 국내 생산 대표 작물인 감자, 사과, 고추, 현미, 대두 5가지 작물을 대상으로 45종의 농약 성분을 기체 크로마토그래프(Gas chromatograph)로 분석하였다. 3가지 분석 방법에 대한 다종 혼합 농약의 정밀성을 판단하기 위해 표준검량곡선을 작성한 결과 $R^2$ 값은 0.990 이상으로 높은 직선성을 보였고 분석 장비의 최소검출량은 0.1 ng이었다. 각각의 분석법에 따른 회수율 시험의 상대표준편차(Relative standard deviation, RSD)는 30% 이내로 요구 조건을 충족하였으며 다성분 동시 분석법 제 1법 89.13%, QuEChERS 분석법 92.45%, STQ 분석법 85.28%의 평균 회수율을 보였다. 또한 5가지 시료에 대한 45종 농약성분의 평균 matrix effect는 다성분 동시 분석법 24.61%, QuEChERS 분석법 23.98%, STQ분석법 11.24%로 나타났다. 특히 STQ 분석법은 QuEChERS 분석법으로 추출한 시료 용액을 고상의 $C_{18}$, PLS, PSA cartridge column을 차례로 통과하여 용출 정제하는 방법으로 전처리 소요 시간이 짧고 용이하며 높은 정제효과를 보였다. 그러나 전처리 과정에서 농축과정의 생략으로 소량의 추출용매를 분취하여 분석하기 때문에 분석방법의 검출한계(method detection limit, MDL)가 높아지는 문제가 발생하는데, 이를 보완하기 위해 시료의 대량 주입으로 검출한계를 낮추고자 하였다. 대용량 주입장치(large volume injector, LVI)를 이용하여 STQ 분석법을 적용한 분석 결과 표준검량곡선은 0.990 이상의 $R^2$ 값으로 높은 직선성을 보였고, 검출한계는 0.01 mg/kg 수준이었다. 회수율 시험 결과 91.84%의 평균 회수율을 보였으며 2수준 3회 반복 처리에 따른 상대표준편차는 30% 미만이었고 평균 matrix effect는 17.90%으로 높은 재현성과 정확성, 정제 효과를 나타내었다.

Keywords

References

  1. Anastassiades, Michelangelo, et al. (2003) Fast and easy multiresidue method employing acetonitrile extraction/ partitioning and "dispersive solid-phase extraction"for the determination of pesticide residues in produce. Journal of AOAC international 86.2:412-431.
  2. Chamkasem, Narong, et al. (2013) Analysis of 136 Pesticides in Avocado Using a Modified QuEChERS Method with LC-MS/MS and GC-MS/MS. Journal of agricultural and food chemistry 61.10:2315-2329. https://doi.org/10.1021/jf304191c
  3. Gonzlez-Castro, Beceiro-Gonzles EMJ. (2008) Organochlorine pesticide determination in horticultural samples. Pesticide Research Trends. p.13-48.
  4. Hajlov, J., et al. (1998) Matrix-induced effects: a critical point in the gas chromatographic analysis of pesticide residues. Journal of Chromatography A 800.2:283-295. https://doi.org/10.1016/S0021-9673(97)01145-X
  5. Hill, A. R. and S. L. Reynolds (1999) Guidelines for in-house validation of analytical methods for pesticide residues in food and animal feeds. The Analyst 124.6:953-958. https://doi.org/10.1039/a900603f
  6. Hoh, Eunha, and Katerina Mastovska. (2008) Large volume injection techniques in capillary gas chromatography. Journal of Chromatography A 1186.1:2-15. https://doi.org/10.1016/j.chroma.2007.12.001
  7. Ju-young Lee (2012) Development of Multi-Residue Analysis Method of Residue Pesticides in Fruits by QuEChERS. Kyung-pook National University.
  8. Koesukwiwat, Urairat, Kunaporn Sanguankaew, and Natchanun Leepipatpiboon (2008) Rapid determination of phenoxy acid residues in rice by modified QuEChERS extraction and liquid chromatographytandem mass spectrometry. Analytica chimica acta 626.1:10-20. https://doi.org/10.1016/j.aca.2008.07.034
  9. Matuszewski, B. K. (2006) Standard line slopes as a measure of a relative matrix effect in quantitative HPLCMS bioanalysis. Journal of Chromatography B 830.2:293-300. https://doi.org/10.1016/j.jchromb.2005.11.009
  10. Min-jung Kim, et al. (2005) Application of the Pesticide Multiresidue Analysis Method for Potatoes and Carrots 37.2:304-307.
  11. National Institute of Food and Drug Safety Evaluation (2014) Korean Food Standards Codex-Pesticide Analytical Manual.
  12. Niessen, W. M. A., P. Manini and R. Andreoli (2006) Matrix effects in quantitative pesticide analysis using liquid chromatography mass spectrometry. Mass Spectrometry Reviews 25.6:881-899. https://doi.org/10.1002/mas.20097
  13. Schellin, Manuela, Barbara Hauser, and Peter Popp (2004) Determination of organophosphorus pesticides using membrane-assisted solvent extraction combined with large volume injectiongas chromatographymass spectrometric detection. Journal of Chromatography A 1040.2:251-258. https://doi.org/10.1016/j.chroma.2004.04.006
  14. Schenck, Frank J., and Steven J. Lehotay (2000) Does further clean-up reduce the matrix enhancement effect in gas chromatographic analysis of pesticide residues in food?. Journal of chromatography A 868.1:51-61. https://doi.org/10.1016/S0021-9673(99)01137-1
  15. Teske, J., J. Efer, and W. Engewald. (1997) Large-volume PTV injection: new results on direct injection of water samples in GC analysis. Chromatographia 46.11-12: 580-586. https://doi.org/10.1007/BF02490516
  16. Wilkowska, Angelika, and Marek Biziuk (2011) Determination of pesticide residues in food matrices using the QuEChERS methodology. Food Chemistry 125.3: 803-812. https://doi.org/10.1016/j.foodchem.2010.09.094
  17. Young-Min Hong, Ryoichi sasano, Yutaka Nakasishi (2005) Rapid Sample Preparation and Multiple Pesticides Residue Analysis in Food by GC/MS using Stomach Shaped Large Volume Injector. The Korea Society for Environmental Analysis. 8.3: 154-161.

Cited by

  1. Residue analysis of spinetoram and spinosad on paprika leaf using the modified QuEChERS pre-treatment methods vol.44, pp.4, 2015, https://doi.org/10.7744/kjoas.20170043