DOI QR코드

DOI QR Code

Ion Electrical and Optical Diagnostics of an Atmospheric Pressure Plasma Jet

  • Ha, Chang Seung (Department of Electrical Engineering, Pusan National University) ;
  • Shin, Jichul (School of Mechanical Engineering, University of Ulsan) ;
  • Lee, Ho-Jun (Department of Electrical Engineering, Pusan National University) ;
  • Lee, Hae June (Department of Electrical Engineering, Pusan National University)
  • Received : 2014.12.15
  • Accepted : 2015.01.30
  • Published : 2015.01.30

Abstract

The characteristics of an atmospheric pressure plasma jet (APPJ) in He discharge are measured with electrical and optical diagnostics methods. The discharge phenomenon in one cycle of the APPJ was diagnosed using intensified charge coupled device (ICCD) imaging. The gate mode images show that the propagation of plasma bullets happens only when the applied voltage on the inner conductor is positive. Moreover, the Schlieren image of the plasma jet shows that the laminar flow is changed into a turbulent flow when the plasma jet is turned on, especially when the gas flow rate increases.

Keywords

References

  1. K. H. Becker, U. Kogelschatz, K. Schoenbach, R. J. Barker, Non-Equilibrium air plasmas at atmospheric pressure, Institute of Physics, Bristol and Philadelphia (2005).
  2. J. L. Walsh and M. G. Kong, Appl. Phys. Lett. 91, 251504 (2007). https://doi.org/10.1063/1.2825576
  3. K. Niemi, S. Reuter, L. M. Graham, J. Waskoenig, N. Knake, V. Schulz-von der Gathen, and T. Gans, J. Phys. D: Appl. Phys. 43, 124006 (2010). https://doi.org/10.1088/0022-3727/43/12/124006
  4. C. Wu, A. R. Hoskinson, and J. Hopwood, Plasma Sources Sci. Technol. 20, 045022 (2011). https://doi.org/10.1088/0963-0252/20/4/045022
  5. J. L. Walsh, J. J. Shi, and M. G. Kong, Appl. Phys. Lett. 88, 171501 (2006). https://doi.org/10.1063/1.2198100
  6. E. Stoffels, A. J. Flikweert, W. W. Stoffels, and G. M. W. Kroesen, Plasma Sources Sci. Technol. 11, 383 (2002). https://doi.org/10.1088/0963-0252/11/4/304
  7. D. S. Lee, K. Tachibana, H. J. Yoon, and H. J. Lee, Jpn. J. Appl. Phys. 48, 056003 (2009). https://doi.org/10.1143/JJAP.48.056003
  8. H. W. Lee, G. Y. Park, Y. S. Seo, Y. H. Im, S. B. Shim, and H. J. Lee, J. Phys. D: Appl. Phys. 44, 053001 (2011). https://doi.org/10.1088/0022-3727/44/5/053001
  9. C.-H. Park, J.-Y. Choi, M.-S. Choi, Y.-K. Kim, H.-J. Lee, Surf. Coat. Technol. 197, 223 (2005). https://doi.org/10.1016/j.surfcoat.2004.11.039
  10. C. Jiang, M. T. Chen, and M. A. Gundersen, J. Phys. D: Appl. Phys. 42, 232002 (2009). https://doi.org/10.1088/0022-3727/42/23/232002
  11. J. L. Walsh, F. Iza, N. B. Janson, V. J. Law, and M. G. Kong, J. Phys. D: Appl. Phys. 43, 075201 (2010). https://doi.org/10.1088/0022-3727/43/7/075201
  12. J. W. Bradley, J.-S. Oh, O. T. Olabanji, C. Hale, R. Mariani, and K. Kontis, IEEE Trans. Plasma Sci. 39, 2312 (2011). https://doi.org/10.1109/TPS.2011.2157940
  13. J. Shin, N. T. Clemens, and L. L. Raja, IEEE Trans. Plasma Sci. 36, 1316 (2008). https://doi.org/10.1109/TPS.2008.926854
  14. J.-S. Oh, O. T. Olabanji, C. Hale, R. Mariani, K. Kontis, and J. W. Bradley, J. Phys. D: Appl. Phys. 44, 144206 (2011).
  15. N. Jiang, J. Yang, F. He, and Z. Cao, J. Appl. Phys. 109, 093305 (2011). https://doi.org/10.1063/1.3581067
  16. E. Robert, V. Sarron, T. Darny, D. Ries, S. Dozias, J. Fontane, L. Joly, and J-M Pouvesle, Plasma Sources Sci. Technol. 23, 012003 (2014). https://doi.org/10.1088/0963-0252/23/1/012003