DOI QR코드

DOI QR Code

Effect of Fluorination of Carbon Nanotubes on Physico-chemical and EMI Shielding Properties of Polymer Composites

고분자 복합재의 물리화학적 및 전자파차폐 특성에 미치는 탄소나노튜브의 불소화 영향

  • Lee, Si-Eun (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Kim, Doyoung (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Lee, Man Young (The 4th R&D Institute-4, Agency for Defense Development) ;
  • Lee, Min-Kyung (The 4th R&D Institute-4, Agency for Defense Development) ;
  • Jeong, Euigyung (The 4th R&D Institute-4, Agency for Defense Development) ;
  • Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
  • Received : 2014.06.17
  • Accepted : 2014.07.29
  • Published : 2015.01.25

Abstract

Mutli-walled carbon nanotubes (MWCNTs) were surface-modified by a hydrofluoric acid solution to remove impurities and improve interfacial bonding and dispersion of nanotubes in an epoxy matrix. The crystallinity on the surface of treated MWCNTs was investigated by X-ray photoelectron spectroscopy and Raman spectroscopy. The mechanical properties were characterized by tensile test, and the enhancement of mechanical properties of the modified MWCNTs/epoxy composites was indicated by a 33% increase in tensile strength. The electromagnetic interference shielding effectiveness (EMI-SE) of modified MWCNTs/epoxy composites was improved with an increase in concentration of hydrofluoric solution, and EMI-SE showed the maximum increase with 25% HF. However, mechanical and EMI-SE properties didn't show further increase with over 50% HF concentration because the properties of MWCNTs were influenced by degradation of crystallinity and intrinsic properties of MWCNTs. The mechanical and electrical property enhancements of the polymer composites are attributed to the modification of MWCNTs which improve crystallinity of MWCNTs and dispersion in the epoxy resin.

탄소나노튜브의 불순물을 제거하고 에폭시 수지와의 계면접착력 향상과 에폭시 내 탄소나노튜브의 분산성 증가를 위하여 불산(hydrofluoric acid)으로 그 표면을 개질하였다. 표면 처리된 탄소나노튜브의 결정성은 광전자 분광기(X-ray photoelectron spectroscopy)와 라만 분광기(Raman spectroscopy)를 통해 분석하였고, 인장시험으로 기계적 강도 분석을 실시하였다. 표면 처리된 탄소나노튜브/에폭시 복합재의 인장강도는 미처리 탄소나노튜브/에폭시 복합재와 비교하여 최대 약 33% 향상됨을 확인할 수 있었고, 탄소나노튜브/에폭시 복합재의 전자파차폐 특성은 탄소나노튜브의 불산처리 농도에 따라 증가하는 경향을 보였고 25%의 농도로 처리되었을 때, 최대 전자파차폐 특성을 보였다. 그러나 기계적 특성 및 전자파차폐 특성은 50% 이상의 불산 농도로 처리된 탄소나노튜브/에폭시 복합재에서 오히려 감소하였으며 이는 높은 농도의 불산으로 인하여 탄소나노튜브의 표면 결정성 감소 및 고유 특성에 영향을 미친 것으로 파악된다. 고분자 복합재의 기계적, 전기적 특성 향상은 불산 처리로 인한 탄소나노튜브의 결정성 향상과 에폭시 수지 내에 분산성의 증가에 기인하였다.

Keywords

Acknowledgement

Supported by : 국방과학연구소

References

  1. W. S. Jou, H. Z. Cheng, and C. F. Hsu, J. Alloys Compd., 434, 641 (2007).
  2. Q. Hu and M. S. Kim, Carbon Lett., 9, 298 (2008). https://doi.org/10.5714/CL.2008.9.4.298
  3. L. Martzui, L. Vovchenko, Y. Prylutskyy, I. Korotash, V. Marzui, P. Eklund, U. Ritter, and P. Scharff, Mater. Sci. Eng. C, 27, 1007 (2007). https://doi.org/10.1016/j.msec.2006.06.017
  4. D. D. L. Chung, Carbon, 39, 279 (2001). https://doi.org/10.1016/S0008-6223(00)00184-6
  5. C. Y. Huang and C. C. Wu, Eur. Polym. J., 36, 2729 (2000). https://doi.org/10.1016/S0014-3057(00)00039-2
  6. C. Y. Huang and J. F. Pai, Eur. Polym. J., 34, 261 (1998). https://doi.org/10.1016/S0014-3057(96)00248-0
  7. C. Y. Huang and T. W. Chiou, Eur. Polym. J., 34, 37 (1998). https://doi.org/10.1016/S0014-3057(97)00068-2
  8. C. Y. Huang and J. F. Pai, J. Appl. Polym. Sci., 63, 115 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970103)63:1<115::AID-APP12>3.0.CO;2-4
  9. C. Y. Huang and W. W. Mo, Surf. Coat. Technol., 154, 55 (2002). https://doi.org/10.1016/S0257-8972(01)01709-1
  10. C. Y. Huang and W. W. Mo, J. Appl. Polym. Sci., 85, 1661 (2002). https://doi.org/10.1002/app.10688
  11. K. Y. Park, S. E. Lee, C. G. Kim, and J. H. Han, Compos. Struct., 81, 401 (2007). https://doi.org/10.1016/j.compstruct.2006.08.029
  12. J. S. Im, J. G. Kim, and Y. S. Lee, Carbon, 47, 2640 (2009). https://doi.org/10.1016/j.carbon.2009.05.017
  13. Y. Huang, N. Li, Y. Ma, F. Du, F. Li, X. He, X. Lin, H. Gao, and Y. Chen, Carbon, 45, 1614 (2007). https://doi.org/10.1016/j.carbon.2007.04.016
  14. X. Xie, Mai, and X. Zhou, Mater. Sci. Eng. R. Rep., 49, 89 (2005). https://doi.org/10.1016/j.mser.2005.04.002
  15. J. Zhu, J. Kim, H. Peng, J. L. Margrave, V. N. Khabashesku, and E. V. Barrera, Nano Lett., 3, 1107 (2003). https://doi.org/10.1021/nl0342489
  16. M. Abdalla, D. Dean, D. Adibempe, E. Nyairo, P. Robinson, and G. Thompson, Polymer, 48, 5662 (2007). https://doi.org/10.1016/j.polymer.2007.06.073
  17. Y. P. Sun, K. Fu, Y. Lin, and W. Huang, Acc. Chem. Res., 35, 1096 (2002). https://doi.org/10.1021/ar010160v
  18. C. A. Dyke and J. M. Tour, Chem. Eur. J., 10, 812 (2004). https://doi.org/10.1002/chem.200305534
  19. E. Jeong, M. J. Jung, S. H. Cho, S. I. Lee, and Y. S. Lee, Colloid Surf. A, 377, 243 (2011). https://doi.org/10.1016/j.colsurfa.2010.12.035
  20. P. C. Ma, J. K. Kim, and B. Z. Tang, Compos. Sci. Technol., 67, 2965 (2007). https://doi.org/10.1016/j.compscitech.2007.05.006
  21. L. J. Lanticse, Y. Tanabe, K. Matsui, Y. Kaburagi, K. Suda, M. Hoteida, M. Endo, and E. Yasuda, Carbon, 44, 3078 (2006). https://doi.org/10.1016/j.carbon.2006.05.008
  22. Q. Chen, L. Dai, M. Gao, S. Huang, and A. Mau, J. Phys. Chem. B, 105, 618 (2001). https://doi.org/10.1021/jp003385g
  23. Y. P. Sun, K. Fu, Y. Lin, and W. Huqng, Acc. Chem. Res., 35, 1096 (2002). https://doi.org/10.1021/ar010160v
  24. J. A. Kim, D. G. Seong, T. J. Kang, and J. R. Youn, Carbon, 44, 1898 (2006). https://doi.org/10.1016/j.carbon.2006.02.026
  25. Y. K. Choi, K. Sugimoto, S. M. Song, Y. Gotoh, Y. Ohkoshi, and M. Endo, Carbon, 43, 2199 (2005). https://doi.org/10.1016/j.carbon.2005.03.036
  26. E. T. Thostenson, C. Li, and T. W. Chou, Compos. Sci. Technol., 65, 491 (2005). https://doi.org/10.1016/j.compscitech.2004.11.003
  27. E. T. Thostenson and T. W. Chou, J. Phys. D. Appl. Phys., 35, 77 (2002).
  28. I. D. Rosca, F. Watan, M. Uo, and T. Akasaka, Carbon, 43, 3124 (2005). https://doi.org/10.1016/j.carbon.2005.06.019
  29. H. C. Kuan, C. C. M. Ma, W. P. Chang, S. M. Yuen, H. H. Wu, and T. M. Lee, Compos. Sci. Technol., 65, 1703 (2005). https://doi.org/10.1016/j.compscitech.2005.02.017
  30. M. H. Al-Saleh and U. Sundararaj, Carbon, 47, 1738 (2009). https://doi.org/10.1016/j.carbon.2009.02.030
  31. S. Bhadra, N. K. Singha, and D. Khstair, Curr. Appl. Phys., 9, 139 (2009).

Cited by

  1. 니켈나노파우더 함침기법을 이용한 탄소복합소재의 전자파차폐 효과에 관한 연구 vol.19, pp.12, 2015, https://doi.org/10.14775/ksmpe.2020.19.12.049
  2. Effects of Composition on the Electromagnetic Wave Shielding/Absorption and Corrosion in Zn-Ni Alloy Thin Film vol.60, pp.1, 2015, https://doi.org/10.3365/kjmm.2022.60.1.62