DOI QR코드

DOI QR Code

A spectrum based evaluation algorithm for micro scale weather analysis module with application to time series cluster analysis

스펙트럼분석 기반의 미기상해석모듈 평가알고리즘 제안 및 시계열 군집분석에의 응용

  • Kim, Hea-Jung (Department of Statistics, Dongguk University) ;
  • Kwak, Hwa-Ryun (Institute of Statistical Information and Technique, Dongguk University) ;
  • Kim, Yu-Na (Department of Statistics, Dongguk University) ;
  • Choi, Young-Jean (Center for Atmospheric Science & Earthquake Research)
  • 김혜중 (동국대학교 통계학과) ;
  • 곽화륜 (동국대학교 통계정보기술연구소) ;
  • 김유나 (동국대학교 통계학과) ;
  • 최영진 (기상기술개발원 차세대도시농림융합기상사업단)
  • Received : 2014.11.07
  • Accepted : 2014.12.15
  • Published : 2015.01.31

Abstract

In meteorological field, many researchers have tried to develop micro scale weather analysis modules for providing real-time weather information service in the metropolitan area. This effort enables us to cope with various economic and social harms coming from serious change in the micro meteorology of a metropolitan area due to rapid urbanization such as quantitative expansions in its urban activity, growth of population, and building concentration. The accuracy of the micro scale weather analysis modules (MSWAM) directly related to usefulness and quality of the real-time weather information service in the metropolitan area. This paper design a evaluation system along with verification tools that sufficiently accommodate spatio-temporal characteristics of the outputs of the MSWAM. For this we proposes a test for the equality of mean vectors of the output series of the MSWAM and corresponding observed time series by using a spectral analysis technique. As a byproduct, a time series cluster analysis method, using a function of the test statistic as the distance measure, is developed. A real data application is given to demonstrate the utility of the method.

기상분야에서는 다양한 미기상해석모듈 (micro scale weather analysis module)을 개발하여 초고분해능의 기상정보서비스를 실시간으로 제공하고자 노력하고 있다. 이와 같은 연구들은 최근 대도시의 양적인 팽창으로 인해 발생되는 도시 미기상 (micro meteorology)의 급격한 변화에 효과적으로 대처할 수 있는 경제적 사회적 활동을 가능케 한다. 따라서 미기상해석모듈의 정확성은 도시 미기상정보서비스의 품질 및 효용성에 직결된다. 본 논문은 미기상해석모듈이 생성하는 시-공간적인 특성을 가진 양적인 결과물의 정확성에 대한 평가체계를 설계하였다. 이와 더불어 평가체계의 구성에 사용될 평가도구로써 시계열평균의 동일성검정 알고리즘을 스펙트럼 분석기법으로 구축하였으며, 동일성 검정통계의 함수를 거리측도로 사용하는 시계열 군집분석법도 함께 개발하였다. 또한, 사례연구를 통해 제안된 군집분석법과 평가알고리즘의 유용성을 보였다.

Keywords

References

  1. Boo, K. O. and Oh, S. N. (2000). Characteristics of spatial and temporal distribution of air temperature in Seoul. Journal of the Korean Meteorological Society, 36, 499-506.
  2. Brown, B. G., Bullock, R., Gotway, J. H., Ahijevych, D., Davis, C., Gilleland, E. and Holland, L. (2007). Application of the mode object-based verification tool for the evaluation of model precipitation fields. Proceedings of AMS 22nd Conference on Weather Analysis and Forecasting and 18th Conference on Numerical Weather Prediction, American Meteoro- logical Society, http://ams.confex.com/ams/pdfpapers/124856.pdf.
  3. Casati, B., Ross, G. and Stephenson, D. B. (2004). A new intensity-scale approach for the verification of spatial precipitation forecasts. Meteorological Applications, 11, 141-154. https://doi.org/10.1017/S1350482704001239
  4. Davis, C.A., Brown, B. G. and Bullock, R. G. (2006a). Object-based verification of precipitation forecasts, Part I: Methodology and application to mesoscale rain areas. Monthly Weather Review, 134, 1772-1784. https://doi.org/10.1175/MWR3145.1
  5. Davis, C.A., Brown, B. G. and Bullock, R. G. (2006b). Object-based verification of precipitation forecasts, Part II: Application to convective rain systems. Monthly Weather Review, 134, 1785-1795. https://doi.org/10.1175/MWR3146.1
  6. Developmental Testbed Center (2013). Model evaluation tools version 4.1 (METv4.1), Boulder, Colorado, USA.
  7. Giri, N. (1965). On the complex analogues of $T^2$ and $R^2$ Tests. The Annals of Mathematical Statistics, 36, 664-670. https://doi.org/10.1214/aoms/1177700173
  8. Hannan, E. J. (1970). Multiple time series, Wiley, New York.
  9. Khatri, C. G. (1965). Classical statistical analysis based on a certain multivariate complex gaussian distribution. The Annals of Mathematical Statistics, 36, 98-114. https://doi.org/10.1214/aoms/1177700274
  10. Kim, H. J., Kwak, H. R., Kim, Y. N. and Choi, Y. J. (2014). Time series clustering algorithm for evaluation of micro scale weather analysis module: Application to cluster analysis of wind direction of six southwest AWS regions. Journal of the Korean Data Analysis Society, 16, 2427-2437.
  11. Kim, Y. H., Ryoo, S. B., Park, I. S., Koo, H. J. and Nam, J. C. (2008). Does the restoration of an inner-city stream in Seoul affect local thermal environment. Theoretical and Applied Climatology, 92, 239-248. https://doi.org/10.1007/s00704-007-0319-z
  12. Korea Meteorological Administration (2011). Public satisfaction survey on national weather service in 2011, Korea Meteorological Administration, Korea.
  13. Lee, M., Lim, J., Park, C. and Lee, K. E. (2014). Functional clustering for clubfoot data: A case study. Journal of the Korean Data & Information Science Society, 25, 1069-1077. https://doi.org/10.7465/jkdi.2014.25.5.1069
  14. Mora-Ramirez, M. A. and Garcia, A. R. (2012). Evaluation of WRF-CHEM simulations with the unified post processor (UPP) and model evaluation tool (MET). Proceeding of the 11th Annual CMAS Conference, 15-17.
  15. Shumway, R. H. and Stoffer, D. S. (2006). Time series analysis and its applications with R examples, 2nd Ed., Springer, New York.
  16. Timm, N. H. (2002). Applied multivariate analysis, Springer, New York.
  17. Toshiaki, I., Shimodozono, K. and Hanaki, K. (1999). Impact of anthropogenic heat on urban climate in Tokyo. Atmospheric Environment, 33, 3897-3909. https://doi.org/10.1016/S1352-2310(99)00132-6
  18. Woo, S. Y., Lee, J. W. and Jhun, M. (2014). Microarray data analysis using relative hierarchical clustering. Journal of the Korean Data & Information Science Society, 25, 999-1009. https://doi.org/10.7465/jkdi.2014.25.5.999

Cited by

  1. A spatial analysis of Neyman-Scott rectangular pulses model using an approximate likelihood function vol.27, pp.5, 2016, https://doi.org/10.7465/jkdi.2016.27.5.1119
  2. Functional clustering for electricity demand data: A case study vol.26, pp.4, 2015, https://doi.org/10.7465/jkdi.2015.26.4.885
  3. 신호 처리를 위한 R활용서 vol.28, pp.5, 2015, https://doi.org/10.7465/jkdi.2017.28.5.1001
  4. 고등학교 3학년 학생의 융복합적 간호대학 진로선택 요인 분석 vol.8, pp.11, 2015, https://doi.org/10.15207/jkcs.2017.8.11.109