DOI QR코드

DOI QR Code

Jacking Penetration Resistance of Bucket Foundations in Silty Sand Using Centrifuge Modelling

실트질모래 지반에서 버켓기초의 압입저항력에 대한 원심모형실험 연구

  • 김동준 (현대건설(주) 연구개발본부) ;
  • 윤준웅 (현대건설(주) 연구개발본부) ;
  • 이규열 (현대건설(주) 연구개발본부) ;
  • 지성현 (현대건설(주) 연구개발본부) ;
  • 추연욱 (국립공주대학교 건설환경공학부)
  • Received : 2014.10.28
  • Accepted : 2014.11.25
  • Published : 2015.01.31

Abstract

Penetration resistance of bucket foundations with skirt wall in the silty sand of the western coast of Korea was analyzed by centrifuge modelling. The penetration resistance is induced when the bucket foundations are jacked into the soil without suction, and is directly related to the self-weight penetration depth. The procedure by Houlsby and Byrne (2005), which takes into account the effect of stress increase by frictional resistance of skirt wall, was utilized to generate the penetration resistance similar to the experimental results. This paper describes the methods by which major parameters such as lateral earth pressure coefficient and friction angle between the skirt wall and the soil are evaluated. The effect of changes in these parameters on the predictions is analyzed. Also, observed soil behaviour during jacking penetration is investigated.

서남해안 지역의 중간조밀한 실트질모래 지반에서 버켓기초 스커트벽체의 압입저항력을 원심모형실험을 통하여 분석하였다. 압입저항력은 석션을 작용하지 않고 버켓기초를 지반에 관입시킬 때 발생하는 저항력으로서 자중관입 깊이와 직접적으로 관계된다. 스커트벽체의 주면저항력에 의한 지반의 응력증가 효과를 고려하는 방법(Houlsby and Byrne, 2005) 을 기반으로 실험 결과와 유사한 압입저항력을 산정할 수 있었다. 압입저항력 산정에 이용되는 수평토압계수, 스커트 벽체와 지반간의 경계면 마찰각 등의 주요 물성값의 산정 방법에 대하여 기술하였다. 또한, 응력증가 효과의 고려 여부와 물성값의 변화가 압입저항력 산정 결과에 미치는 영향과 실험을 통해 계측된 압입시 지반거동에 대하여 분석하였다.

Keywords

References

  1. API RP 2A-WSD (2000), Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms - WSD (Working Stress Design), American Petroleum Institute, Washington, DC.
  2. API RP 2GEO (2011), Recommended Practice for Geotechnical Foundation Design Consideration, American Petroleum Institute, Washington, DC.
  3. De Nicola, A. and Randolph, M. F. (1997), "The Plugging Behaviour of Driven and Jacked Piles in Sand", Geotechnique, 47(4), pp. 841-856. https://doi.org/10.1680/geot.1997.47.4.841
  4. Erbrich, C. T. and T. I. Tjelta (1999), "Installation of Bucket Foundations and Suction Caissons in Sand-Geotechnical Performance", Offshore Technology Conference, Houston, OTC-10990-MS.
  5. Gui, M. W. and Bolton, M. D. (1998), "Geometry and Scale Effects in CPT and Pile Design", In Proceeding of the 1st International Conference of Site Characterization, Atlanta, Vol.1, pp.1063-1068.
  6. Houlsby, G. T. and Byrne, B. W. (2005), "Design Procedures for Installation of Suction Caissons in Sand", Proceedings of the ICE-Geotechnical Engineering, 158(3), pp.135-144. https://doi.org/10.1680/geng.2005.158.3.135
  7. Kim, D. J., Choo, Y. W., Kim, S., Kim, J. H., Choi, H. Y., Kim, D. S., Lee, M. S., and Park, Y. H. (2013a), "Bearing Capacity of a Monopod Bucket Foundation for Offshore Wind Towers - Centrifuge and Numerical Modeling", Journal of Korean Geotechnical Society, 29(4), pp.23-32. https://doi.org/10.7843/kgs.2013.29.4.23
  8. Kim, D. S, Kim, N. R., Choo, Y. W., and Cho, G. C. (2013b), "A Newly Feveloped State-of-the-art Geotechnical Centrifuge in South Korea", KSCE Journal of Civil Engineering, 17(1), pp.77-84. https://doi.org/10.1007/s12205-013-1350-5
  9. Lehane, B. M. and Gavin, K. G. (2001), "Base Resistance of Jacked Pipe Piles in Dand", Journal of Geotechnical and Geoenvironmental Engineering, 127(6), pp.473-480. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:6(473)
  10. Paik, K. H. and Lee, S. R. (1993), "Behavior of Soil Plugs in Open-ended Model Piles Driven into Sands", Marine Georesources & Geotechnology, 11(4), pp.353-373. https://doi.org/10.1080/10641199309379929
  11. Randolph, M. F. (2003), "Science and Empiricism in Pile Foundation Design", Geotechnique, 53(10), pp.847-875. https://doi.org/10.1680/geot.2003.53.10.847
  12. Randolph, M. and Gourvenec, M. R. S. (2011), Offshore geotechnical engineering, CRC Press.
  13. Reissner, H. (1924), "Zum Erddruckproblem", Proc. 1st Int. Congress of Applied Mechanics, Delft, The Netherlands, pp.295-311.
  14. Salgado, R. (2008), The Engineering of Foundations, New York, McGraw Hill.
  15. Senders, M. (2008), Suction Caissons in Sand as Tripod Foundations for Offshore Wind Turbines, Ph.D. Thesis, the University of Western Australia.
  16. Villalobos, F. A. (2006), Model Testing of Foundations for Offshore Wind Turbine, Ph.D. Thesis, the University of Oxford.
  17. White, D. J., Sidhu, H. K., Finlay, T. C., Bolton, M. D., and Nagayama, T. (2000), "Press-in Piling: The Influence of Plugging on Driveability", In Proceedings of the 8th International Conference of the Deep Foundations Institute, New York. pp.299-310.
  18. http://www.kowp.co.kr/, Korea Offshore Wind Power

Cited by

  1. 실트질 모래지반에 설치된 해상풍력 석션버켓기초의 신뢰성 해석 vol.20, pp.12, 2019, https://doi.org/10.14481/jkges.2019.20.12.41
  2. Jacking penetration resistance and mechanical characteristics of bucket foundations in sand vol.79, pp.1, 2015, https://doi.org/10.1007/s10064-019-01552-9
  3. 모형실험을 활용한 저수심 사질토 지반에서 원형강관 설치 석션압 평가 vol.22, pp.2, 2021, https://doi.org/10.5762/kais.2021.22.2.1