DOI QR코드

DOI QR Code

Liquid-phase Microextraction Pretreatment Techniques for Analysis of Chemical Warfare Agents and Their Degradation Byproducts in Environmental Aqueous Samples

환경샘플 내 화학작용제 및 분해물질 분석을 위한 Liquid Phase Microextraction (LPME) 전처리 기법

  • Kim, Dongwook (Department of Chemistry, Korea Military Academy (KMA)) ;
  • Chung, Wooyoung (Department of Chemistry, Korea Military Academy (KMA)) ;
  • Kye, Youngsik (Department of Chemistry, Korea Military Academy (KMA))
  • 김동욱 (육군사관학교 물리화학과) ;
  • 정우영 (육군사관학교 물리화학과) ;
  • 계영식 (육군사관학교 물리화학과)
  • Received : 2015.01.23
  • Published : 2015.02.10

Abstract

International interests in chemical warfare agents (CWAs) have been increased recently because of the use of sarin (GB) in Syrian civil war which caused around 1,300 casualties in 2013. After exposing to natural environments, CWAs undergo hydrolysis or photodegrade to non-toxic degradation byproducts. Generally, CWAs and their degradation byproducts are present at very low concentration (e.g. several ppb), thus pretreatment processes including separation, extraction and concentration are required prior to any analyses. Liquid-liquid extraction and solid-phase extraction (SPE) are common techniques to pretreat environmental samples. Recently, a novel pretreatment method, liquid phase miecoextraction (LPME), has been applied to CWAs analysis, which could reduce amounts of solvent used but promote analytical efficiencies. Fundamental backgrounds of LPME and its application to CWAs analysis were reviewed.

2013년 시리아 내전 간 사용되어 1,300명 이상의 사망자를 발생시킨 사린(GB) 등의 화학무기로 인해 화학무기에 대한 국제적 관심이 다시 한번 높아지게 되었다. 화학작용제는 자연환경에 노출이 되면 가수분해(hydrolysis) 또는 광분해(photodegradation) 과정을 거쳐 분해물질로 분해된다. 화학작용제 및 분해물질(가수분해 또는 산화된 생성물)은 통상수 ppb 정도의 낮은 농도로 존재하기 때문에 정확한 샘플분석을 위해서는 화학작용제 및 분해물질을 환경샘플로부터 분리, 추출, 농축시키는 전처리 과정이 필요하다. 용매추출법(LLE), 고체상 추출법(SPE) 등이 화학작용제의 전처리 방법으로 많이 사용되나 최근에는 사용되는 용매의 양은 줄이면서 분석효율은 높일 수 있는 liquid phase microextraction (LPME)이 개발 적용되고 있다. 본 리뷰에서는 화학작용제 및 그 분해물질의 전처리에 활용된 LPME 전처리 기법에 대해 살펴보고자 한다.

Keywords

References

  1. R. L. Gustafson and A. E. Martell, A kinetic study of the copper (II) chelate-catalyzed hydrolysis of isopropyl methylphosphonofluoridate (sarin), J. Am. Chem. Soc., 84, 2309-2316 (1962). https://doi.org/10.1021/ja00871a007
  2. J. E. Melanson, C. A. Boulet, and M. Mesilaakso, Chemical Weapons Convention Chemical Analysis, Sample Collection, Preparation And Analytical Methods, 89-132, Wiley, Chichester, UK (2005).
  3. H.-A. Lakso and W. F. Ng, Determination of Chemical Warfare Agents in Natural Water Samples by Solid-Phase Microextraction, Anal. Chem., 69, 1866-1872 (1997). https://doi.org/10.1021/ac960997h
  4. M. Palit, D. Pardasani, A. K. Gupta, and D. K. Dubey, Application of single drop microextraction for analysis of chemical warfare agents and related compounds in water by gas chromatography/ mass spectrometry, Anal. Chem., 77, 711-717 (2005). https://doi.org/10.1021/ac0486948
  5. Y. Liu, E. Zhao, and Z. Zhou, Single-drop microextraction and gas chromatographic determination of fungicide in water and wine samples, Anal. Lett., 39, 2333-2344 (2006). https://doi.org/10.1080/00032710600755843
  6. Y.-G. Park, S. K. Kim, K. Choi, B.-H. Son, J.-S. Park, and H.-K. Kang, Analysis of chemical warfare agents in water using single-drop microextraction, Bull. Korean Chem. Soc., 30, 49-52 (2009). https://doi.org/10.5012/bkcs.2009.30.1.049
  7. L. Kocurova, I. S. Balogh, and V. Andruch, A glance at achievements in the coupling of headspace and direct immersion single-drop microextraction with chromatographic techniques, J. Sep. Sci., 36, 3758-3768 (2013). https://doi.org/10.1002/jssc.201300575
  8. H. Prosen, Applications of liquid-phase microextraction in the sample preparation of environmental solid samples, Molecules, 19, 6776-6808 (2014). https://doi.org/10.3390/molecules19056776
  9. Y. Yan, X. Chen, S. Hu, and X. Bai, Applications of liquid-phase microextraction techniques in natural product analysis: A review, J. Chromatogr. A, 1368, 1-17 (2014). https://doi.org/10.1016/j.chroma.2014.09.068
  10. M. A. Farajzadeh, S. M. Sorouraddin, and M. R. A. Mogaddam, Liquid phase microextraction of pesticides: A review on current methods, Microchim. Acta, 181, 829-851 (2014). https://doi.org/10.1007/s00604-013-1157-6
  11. A. Jain and K. K. Verma, Recent advances in applications of single-drop microextraction: A review, Anal. Chim. Acta, 706, 37-65 (2011). https://doi.org/10.1016/j.aca.2011.08.022
  12. S. K. Kailasa, V. N. Mehta, and H.-F. Wu, Recent developments of liquid-phase microextraction techniques directly combined with ESI- and MALDI-mass spectrometric techniques for organic and biomolecule assays, RSC Adv., 4, 16188-16205 (2014). https://doi.org/10.1039/C3RA47347C
  13. L. Xu and H. K. Lee, Chemical warfare agents: development and applications of sample preparation approaches, in Compr. Sampl. Sample Prep., 3, 603-613 (2012).
  14. Y. K. Park, W. Y. Chung, B. Kim, Y.-S. Kye, M.-S. Shin, and D. Kim, Ion-pair single-drop microextraction determinations of degradation products of chemical warfare agents in water, Chromatographia, 76, 679-685 (2013). https://doi.org/10.1007/s10337-013-2431-9
  15. D. K. Dubey, D. Pardasani, A. K. Gupta, M. Palit, P. K. Kanaujia, and V. Tak, Hollow fiber-mediated liquid-phase microextraction of chemical warfare agents from water, J. Chromatogr. A, 1107, 29-35 (2006). https://doi.org/10.1016/j.chroma.2005.12.095
  16. H. S. N. Lee, C. Basheer, and H. K. Lee, Determination of trace level chemical warfare agents in water and slurry samples using hollow fibre-protected liquid-phase microextraction followed by gas chromatography-mass spectrometry, J. Chromatogr. A, 1124, 91-96 (2006). https://doi.org/10.1016/j.chroma.2006.05.030
  17. D. Pardasani, P. K. Kanaujia, A. K. Gupta, V. Tak, R. K. Shrivastava, and D. K. Dubey, In situ derivatization hollow fiber mediated liquid phase microextraction of alkylphosphonic acids from water, J. Chromatogr. A, 1141, 151-157 (2007). https://doi.org/10.1016/j.chroma.2006.12.010
  18. V. Tak, D. Pardasani, P. K. Kanaujia, and D. K. Dubey, Liquid-liquid-liquid microextraction of degradation products of nerve agents followed by liquid chromatography-tandem mass spectrometry, J. Chromatogr. A, 1216, 4319-4328 (2009). https://doi.org/10.1016/j.chroma.2009.03.039
  19. H. S. N. Lee, M. T. Sng, C. Basheer, and H. K. Lee, Determination of degradation products of chemical warfare agents in water using hollow fibre-protected liquid-phase microextraction with in-situ derivatisation followed by gas chromatography-mass spectrometry, J. Chromatogr. A, 1148, 8-15 (2007). https://doi.org/10.1016/j.chroma.2007.02.104
  20. H. S. N. Lee, M. T. Sng, C. Basheer, and H. K. Lee, Determination of basic degradation products of chemical warfare agents in water using hollow fibre-protected liquid-phase microextraction with in-situ derivatisation followed by gas chromatography-mass spectrometry, J. Chromatogr. A, 1196-1197, 125-132 (2008). https://doi.org/10.1016/j.chroma.2008.04.027
  21. C. Desoubries, F. Chapuis-Hugon, A. Bossee, and V. Pichon, Three-phase hollow fiber liquid-phase microextraction of organophosphorous nerve agent degradation products from complex samples, J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci., 900, 48-58 (2012). https://doi.org/10.1016/j.jchromb.2012.05.029
  22. J. Xiong and B. Hu, Comparison of hollow fiber liquid phase microextraction and dispersive liquid-liquid microextraction for the determination of organosulfur pesticides in environmental and beverage samples by gas chromatography with flame photometric detection, J. Chromatogr. A, 1193, 7-18 (2008). https://doi.org/10.1016/j.chroma.2008.03.072
  23. M. Y. Cheh, H. C. Chua, F. B. Hopkins, J. R. Riches, C. M. Timperley, and H. S. N. Lee, Determination of lewisite constituents in aqueous samples using hollow-fibre liquid-phase microextraction followed by gas chromatography-mass spectrometry, Anal. Bioanal. Chem., 406, 5103-5110 (2014). https://doi.org/10.1007/s00216-014-7751-6
  24. U. V. R. Vijaya Saradhi, S. Prabhakar, T. Jagadeshwar Reddy, and M. R. V. S. Murty, Gas chromatographic-mass spectrometric determination of alkylphosphonic acids from aqueous samples by ion-pair solid-phase extraction on activated charcoal and methylation, J. Chromatogr. A, 1157, 391-398 (2007). https://doi.org/10.1016/j.chroma.2007.04.057
  25. J. Wu and H. K. Lee, Injection port derivatization following ion-pair hollow fiber-protected liquid-phase microextraction for determining acidic herbicides by gas chromatography/mass spectrometry, Anal. Chem., 78, 7292-7301 (2006). https://doi.org/10.1021/ac060966e
  26. R. M. Black and B. Muir, Derivatisation reactions in the chromatographic analysis of chemical warfare agents and their degradation products, J. Chromatogr. A, 1000, 253-281 (2003). https://doi.org/10.1016/S0021-9673(03)00183-3
  27. U. V. R. V. Saradhi, S. Prabhakar, T. J. Reddy, and M. Vairamani, Ion-pair solid-phase extraction and gas chromatography-mass spectrometric determination of acidic hydrolysis products of chemical warfare agents from aqueous samples, J. Chromatogr. A, 1129, 9-13 (2006). https://doi.org/10.1016/j.chroma.2006.06.080
  28. S. Chinthakindi, A. Purohit, V. singh, V. Tak, D. K. Dubey, and D. Pardasani, Solid supported in situ derivatization extraction of acidic degradation products of nerve agents from aqueous samples, J. Chromatogr. A, 1359, 325-329 (2014). https://doi.org/10.1016/j.chroma.2014.07.046
  29. S. Chinthakindi, A. Purohit, V. Singh, D. K. Dubey, and D. Pardasani, On-matrix derivatization extraction of chemical weapons convention relevant alcohols from soil, J. Chromatogr. A, 1311, 170-175 (2013). https://doi.org/10.1016/j.chroma.2013.08.079
  30. M. Palit and G. Mallard, Dispersive derivatization liquid-liquid extraction of degradation products/precursors of mustards and v-agents from aqueous samples, J. Chromatogr. A, 1218, 5393-5400 (2011). https://doi.org/10.1016/j.chroma.2011.06.008
  31. R. Subramaniam, A. Ostin, C. Nilsson, and C. Astot, Direct derivatization and gas chromatography-tandem mass spectrometry identification of nerve agent biomarkers in urine samples, J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci., 928, 98-105 (2013). https://doi.org/10.1016/j.jchromb.2013.03.009
  32. L. Xu, X. Y. Gong, H. K. Lee, and P. C. Hauser, Ion-pair liquid-liquid-liquid microextraction of nerve agent degradation products followed by capillary electrophoresis with contactless conductivity detection, J. Chromatogr. A, 1205, 158-162 (2008). https://doi.org/10.1016/j.chroma.2008.08.005

Cited by

  1. Simultaneous Determination and Monitoring of Bisphenols in River Water using Gas Chromatography-Mass Spectrometry vol.36, pp.3, 2017, https://doi.org/10.5338/KJEA.2017.36.3.25