DOI QR코드

DOI QR Code

Diagnostic assessment on vegetation damage due to hydrofluoric gas leak accident and restoration planning to mitigate the damage in a forest ecosystem around Hube Globe in Gumi

구미 휴브글로브 주변 삼림생태계에서 불화수소가스 유출 사고에 기인한 식생피해 진단 및 그 피해를 완화시키기 위한 복원 계획

  • Kim, Gyung Soon (Department of Biology, Graduate School of Seoul Women's University) ;
  • An, Ji Hong (Department of Biology, Graduate School of Seoul Women's University) ;
  • Lim, Chi Hong (Department of Biology, Graduate School of Seoul Women's University) ;
  • Lim, Yun Kyung (Department of Biology, Graduate School of Seoul Women's University) ;
  • Jung, Song Hie (Department of Biology, Graduate School of Seoul Women's University) ;
  • Lee, Chang Seok (Department of Bio and Environmental Technology, Seoul Women's University)
  • 김경순 (서울여자대학교 대학원 생물학과) ;
  • 안지홍 (서울여자대학교 대학원 생물학과) ;
  • 임치홍 (서울여자대학교 대학원 생물학과) ;
  • 임윤경 (서울여자대학교 대학원 생물학과) ;
  • 정성희 (서울여자대학교 대학원 생물학과) ;
  • 이창석 (서울여자대학교 생명환경공학과)
  • Received : 2014.08.05
  • Accepted : 2014.12.13
  • Published : 2015.02.28

Abstract

We obtained the following results from investigation on vegetation damage from 5 to 6 August, 2013, about one year after an accident that hydrofluoric acid leaked from a chemical maker, Hube Globe in Gumi. Pinus densiflora and Pinus strobus showed very severe damage. Ginko biloba, Quercus acutissima, Pinus rigida, Salix glandulosa, Hibiscus syriacus, and Lagerstroemia indica showed severe damage. Quercus variabilis, Lespedeza cyrtobotrya, and Miscanthus sinensis showed moderate damage. Quercus aliena, Smilax china, Arundidinella hirta, Ailanthus altissima, Robinia pseudoacacia, and Paulowinia coreana showed slight damage. We did not find any plants without leaf damage around there. This result means that fluoride damage still persists in this area as was known that fluoride remains for a long time in air, soil and water and exerts negative effects at all levels of an ecosystem. In addition, fluoride content contained in plant leaf depended on the distance from a fertilizer producing factory and vegetation damage tended to proportionate to the concentration in the Yeocheon industrial complex. In these respects, a measure for removal or detoxification of the remaining fluoride is urgently required around the hydrofluoric acid leak spot. Fertilizing of dolomite containing Ca and Mg, which can trap fluoride, was prepared as one of the restoration plans. In addition, phosphate fertilizing was added in order to enhance soil ameliorating effects. Furthermore, we recommend the introduction of tolerant plants as the second measure to mitigate fluoride damage. As the tolerant plants to make a new forest by replacing trees died due to hydrofluoric acid gas damage, we recommended Q. aliena and S. china, A. hirta, etc. were recommended as plant species to add mantle vegetation to the forest margin to ensure stable interior environment of the forest.

구미의 화학약품 제조업체 휴브글로브에서 불산 유출사고가 발생하고 약 1년 후인 2013년 8월 초 사고 발생 현장 주변에 성립한 식생 피해에 대한 조사를 통해 다음과 같은 결과를 얻었다. 소나무와 스트로브잣나무는 매우 심한 피해, 은행나무, 상수리나무, 리기다소나무, 왕버들, 무궁화 및 배롱나무는 심한 피해, 굴참나무, 참싸리 및 참억새는 중간수준의 피해 그리고 갈참나무, 청미래덩굴, 새, 아까시나무 및 오동은 가벼운 피해를 나타내었다. 우리는 피해 현장 주변에서 피해를 입지 않은 어떤 식물도 발견하지 못하였다. 이러한 결과는 불소가 대기, 토양 및 물에 오랫동안 남아 생태계의 모든 수준에 걸쳐 부정적인 영향을 미친다고 알려졌듯이 이 지역에서 지난 해 발생한 불소피해가 여전히 지속되고 있다는 것을 의미한다. 한편, 여천공업단지에서 조사된 결과에 의하면, 식물 잎에 포함된 불소 농도는 비료공장으로부터 거리에 따라 달라졌고 식생 피해는 그 농도에 비례하는 경향이었다. 이런 점에서 불산 유출사고 현장 주변 생태계에 잔존하는 불소의 제거 및 해독 대책이 시급히 요청되고 있다. 불소를 불활성화 시킬 수 있는 칼슘과 마그네슘을 함유하고 있는 돌로마이트의 시비가 그 피해를 완화시킬 수 있는 복원계획의 하나로 준비되었다. 그밖에 토양개량 효과를 증진시키기 위해 인산염 비료 시비가 복원계획으로 추가되었다. 나아가 우리는 불소피해를 완화시키기 위한 두 번째 대책으로 내성종의 도입을 추천하였다. 불소가스 피해로 고사된 나무들을 대체하여 새로운 숲을 만들기 위한 내성종으로 우리는 갈참나무를 추천하였고, 그 숲이 안정된 내부 환경을 확보하기 위한 망토군락을 이룰 식물 종으로는 청미래덩굴과 새를 추천하였다.

Keywords

References

  1. Abdallah FB, Elloumi N, Mezghani, Garrec JP, and Boukhrisb M (2006). Industrial fluoride pollution of Jerbi grape leaves and the distribution of F, Ca, Mg, and P in them. Fluoride 39(1), pp. 43-48.
  2. Baunthiyal M and Ranghar S (2013). Accumulation of fluoride by plants: potential for phytoremediation. Clean - Soil, Air, Water 41(9999), pp. 1-6
  3. Charlot C and Kisman S (1983). Effects de la pollution fluoree sur la repartition des elements mineraux dans les feuilles et les raciness tuberifiees de radis Raphanus sativa L. Environ Pollut 31, pp. 311-319. https://doi.org/10.1016/0143-1471(83)90067-3
  4. Domingos M, Klumpp A, Rinaldi MCS, Modesto IFm Klumpp G, and Delitti WBC (2003). Combined effects of air and soil pollution by fluoride emissions on Tibouchina pulchra at Cubatao, SE Brazil, and their relations with aluminum. Plant Soil 249, pp. 279-308. https://doi.org/10.1023/A:1022841017303
  5. George EF (1993). The components of culture media. In: Plant Propagation by Tissue Culture. Part 1: The Technology. 2nd ed (George EF ed) Edington, Westbury, Wilts, UK.
  6. Gheorghe IF and Ion B (2011). The effects of air pollutants on vegetation and the role of vegetation in reducing atmospheric pollution. In: The Impact of Air Pollution on Health, Economy, Environment and Agricultural Sources (Mohamed K ed), ISBN: 978-953-307-528-0, In Tech, Available from: http://www.intechopen.com/books/the-impact-of-air-pollution-on-health-economy-environment-and agricultural-sources/the-effectsof-air-pollutants-on-vegetation-and-the-role-ofvegetation-in-reducing-atmospheric-pollu.
  7. Gu S, Choi I, Kim W, Sun O, Kim S, and Lee Y (2013). Study on the distribution of fluorides in plants and the estimation of ambient concentration of hydrogen fluoride around the area of the accidental release of hydrogen fluoride in Gumi. J. of Environ Health Sci 39(4), pp. 346-353. [Korean Literature with English Abstract] https://doi.org/10.5668/JEHS.2013.39.4.346
  8. Haidouti C, Chronopoulou A, and Chronopoulou P (1993). Effects of fluoride emissions from industry on the fluoride concentration of soils and vegetation. Biochem. Syst. Ecol. 21, pp. 195-208. https://doi.org/10.1016/0305-1978(93)90037-R
  9. Jacobson JS, Weinstein LH, McCune DC, and Hitchcock AE (1966). The accumulation of fluoride by plants. J. of Air Pollut Control Assoc 16, pp. 412-417. https://doi.org/10.1080/00022470.1966.10468494
  10. Konishi S and Miyamoto S (1983). Alleviation of aluminum stress and stimulation of tea pollen tube growth by fluoride. Plant Soil Physion 24, pp. 857-862.
  11. Lee CS, Lee KS, Hwangbo JK, You YH, and Kim JH (2004). Selection of tolerant plants and their arrangement to restore a forest ecosystem damaged by air pollution. Water, Air and Soil Pollution 156, pp. 251-273. https://doi.org/10.1023/B:WATE.0000036815.93745.46
  12. Lee CS, Moon JS, and Cho YC (2007). Effects of soil amelioration and tree planting on restoration of an air-pollution damaged forest in south Korea. Water, Air and Soil Pollution 179, pp. 239-254. https://doi.org/10.1007/s11270-006-9228-5
  13. Machoy-Mokrynska A (1995). Fluoride-magnesium interaction. Fluoride 28(4), pp. 175-177.
  14. Mezghani I, Elloumi N, Abdallah FB, Chaieb M, and Boukhris M (2005). Fluoride accumulation by vegetation in the vicinity of a phosphate fertilizer plant in Tunisia. Fluoride 38(1), pp. 69-75.
  15. Miller GW (1993). The effect of fluoride on higher plants with special emphasison early physiological and biochemical disorders. Fluoride 26, pp. 3-22.
  16. National Institute of Environmental Research (NIER) (1984). Studies on the impact of air pollution on the Plants, NIER, Seoul, 276 pp. (In Korean with English summary).
  17. Vike E and Habjorg A (1995). Variation in fluoride content and leaf injury on plants associated with thee aluminium smelters in Norway. Sci Total Environ 163, pp. 25-34. https://doi.org/10.1016/0048-9697(95)04497-O
  18. Weinstein LH (1977). Fluoride and plant life. J. of Occup Med 19, pp. 49-78. https://doi.org/10.1097/00043764-197701000-00005
  19. Weinstein LH and Davison AW (2003). Native plant species suitable as bioindicators and biomonitors for airborne fluoride. Environ Pollut 124, pp. 3-11.
  20. Weinstein LH and Davison AW (2004). Fluorides in the Environment: Effects on Plants and Animals. Wallingford, Oxon, UK.